May 1999 Revised March 2000

FSTU32160 16-Bit to 32-Bit Multiplexer/Demultiplexer Bus Switch

with –2V Undershoot Protection

General Description

FAIRCHILD

SEMICONDUCTOR

The Fairchild Switch FSTU32160 is a 16-bit to 32-bit highspeed CMOS TTL-compatible multiplexer/demultiplexer bus switch. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

The device can be used in applications where two buses need to be addressed simultaneously. The FSTU32160 is designed so that the A Port demultiplexes into B₁ or B₂ or both. The A and B Ports are "undershoot hardened" with UHCTM protection to support an extended range to 2.0V below ground. Fairchild's integrated Undershoot Hardened Circuit, UHC senses undershoot at the I/O's, and responds by preventing voltage differentials from developing and turning on the switch.

Two select (SEL₁, SEL₂) inputs provide switch enable control. When SEL₁, SEL₂ are HIGH, the device precharges the B Port to a selectable bias voltage (Bias V) to minimize live insertion noise.

Features

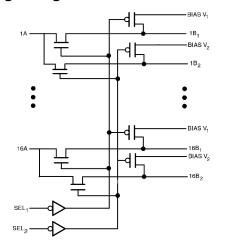
- Undershoot hardened to –2V (A and B Ports).
- Slower Output Enable times prevent signal disruption
- 4 Ω switch connection between two ports.
- Minimal propagation delay through the switch.
- Low I_{CC}.
- Zero bounce in flow-through mode.
- Control inputs compatible with TTL level.
- See Applications Note AN-5008 for details

Ordering Code:

Order Number	Package Number	Package Description	itch
FSTU32160MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide	h
Devices also available	n Tape and Reel. Specify b	by appending the suffix letter "X" to the ordering code.	with
			ר -
			-2V
			Jn
			Undershoot
			<u>s</u>
			õ
			Protection
			l te
			<u></u>
			Po
			-
UHC [™] is a trademark o	f Fairchild Semiconductor	Corporation.	

FSTU32160

Connection Diagram					
Connection I 1B ₁ - 2B ₁ - 2A - 3B ₁ - 4B ₁ - 4B ₁ - 6B ₁ - 6B ₁ - 6B ₁ - 6B ₁ - 8B ₁ - 8B ₁ - 10B ₁ - 10B ₁ - 10B ₁ - 10B ₁ - 12B ₁ - 12B ₁ - 12B ₁ - 12B ₁ - 14B ₁ - 12B ₁ - 14B ₁ - 14B ₁ - 12B ₁ - 14B ₁ - 14B ₁ - 14B ₁ - 12B ₁ - 14B ₁ - 18B ₁	1 56 2 55 3 54 4 53 5 52 6 51 7 50 8 49 9 48 10 47 11 46 12 45 13 44 14 43 15 42 16 41 17 40 18 39 19 38 20 37 21 36 22 35 23 34	$ \begin{array}{c} 1A \\ 1B_2 \\ 2B_2 \\ 3A \\ 3B_2 \\ 4B_2 \\ 5A \\ 5B_2 \\ 6B_2 \\ 7A \\ 7B_2 \\ 6B_2 \\ 7A \\ 7B_2 \\ 8B_2 \\ 0ND \\ 9B_2 \\ 10B_2 \\ 11A \\ 11B_2 \\ 12B_2 \\ 13A \\ 13B_2 \\ 14B_2 \end{array} $			
,		-			
16B ₁ 16A BIAS V ₁	25 32 26 31 27 30	— 15B ₂ — 16B ₂ —BIAS V ₂			
SEL ₁ —	28 29	- SEL ₂			


Pin Descriptions

Pin Name	Description
SEL ₁ , SEL ₂	Select Inputs
A	Bus A
B ₁ , B ₂	Bus B

Truth Table

Inp	outs	Function		
SEL ₁	SEL ₂	Function		
L	Н	$x A = x B_1$		
н	L	$x A = x B_2$		
L	L	$x A = x B_1 and x B_2$		
н	Н	$x B_1, x B_2 = BiasV$		

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC}) DC Switch Voltage (V _S) (Note 2)	-0.5V to +7.0V -2.0V to +7.0V
BiasV Voltage Range DC Input Control Pin Voltage	-0.5V to +7.0V
(V _{IN}) (Note 3)	-0.5V to +7.0V
DC Input Diode Current (I_{IK}) $V_{IN} < 0V$	–50 mA
DC Output Current (I _{OUT})	128 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	+/- 100 mA
Storage Temperature Range (T _{STG})	–65°C to +150 °C

Recommended Operating Conditions (Note 4)

Power Supply Operating (V_{CC})	4.0V to 5.5V
Precharge Supply (BiasV)	1.5 to V_{CC}
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to 5.5V
Input Rise and Fall Time (t_r, t_f)	
Switch Control Input	0nS/V to 5nS/V
Switch I/O	0nS/V to DC

FSTU32160

 $\label{eq:FreeAirOperating Temperature} \begin{array}{ll} (T_A) & -40 \ ^\circ C \ to \ +85 \ ^\circ C \\ \mbox{Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be \\ \end{array}$

operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: V_S is the voltage observed/applied at either the A or B Ports across the switch.

Note 3: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 4: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

	Parameter		$T_A = -40 \ ^\circ C \ to \ +85 \ ^\circ C$				
Symbol		V _{cc}	Min	Тур	Max	Units	Conditions
		(V)		(Note 5)			
V _{IK}	Clamp Diode Voltage	4.5			-1.2	V	$I_{IN} = -18 \text{mA}$
V _{IH}	HIGH Level Input Voltage	4.0-5.5	2.0			V	
V _{IL}	LOW Level Input Voltage	4.0-5.5			0.8	V	
II	Input Leakage Current	5.5			±1.0	μA	$0 \le V_{IN} \le 5.5V$
		0			10	μA	V _{IN} = 5.5V
I _O	Output Current	4.5	0.25			mA	$BiasV = 2.4V, SEL_X = 2.0V$
							$B_X = 0$
I _{OZH} , I _{OZL}	OFF-STATE Leakage Current	5.5			±1.0	μA	$0 \le A, \le V_{CC}, V$
							$BiasV_1 = BiasV_2 = 5.5V$
I _{OZH} , I _{OZL}	OFF-STATE Leakage Current	5.5			±1.0	μA	$0 \le B, \le V_{CC}, V$
							$BiasV_1 = BiasV_2 = FLOATING$
R _{ON}	Switch On Resistance	4.5		4	7	Ω	$V_{IN} = 0V, I_{IN} = 64 \text{ mA}$
	(Note 6)	4.5		4	7	Ω	$V_{IN} = 0V, I_{IN} = 30 \text{ mA}$
		4.5		8	14	Ω	V _{IN} = 2.4V, I _{IN} = 15 mA
		4.0		11	20	Ω	$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}$
I _{CC}	Quiescent Supply Current	5.5			3	μA	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$
ΔI_{CC}	Increase in I _{CC} per Input	5.5			2.5	mA	One input at 3.4V
							Other inputs at V _{CC} or GND
I _{BIAS}	Bias Pin Leakage Current	5.5			±1.0	μA	SEL_1 , $SEL_2 = 0V$
							$B_X = 0V$, $BiasV_X = 5.5V$
V _{IKU}	Voltage Undershoot	5.5			-2.0	V	$0.0 \text{ mA} \ge I_{IN} \ge -50 \text{ mA}$
							SEL_1 , $SEL_2 = 5.5V$

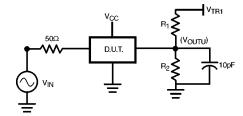
Note 5: Typical values are at V_{CC} = 5.0V and T_A = +25°C

Note 6: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

	Parameter		$T_A = -40$ °C to +85 °C, C _L = 50 pF, RU= RD = 500 Ω					
Symbol	Parameter	V _{CC} = 4.	$V_{CC}=4.5-5.5V$		$V_{CC} = 4.0V$		Conditions	Figure No.
		Min	Max	Min	Max			
t _{PHL} , t _{PLH}	A or B, to B or A (Note 7)		0.25		0.25	ns	V _I = OPEN	Figure 2 Figure 3
t _{PZH}	Output Enable Time, SEL to A, B	7.0	30.0		35.0	ns	V _I = OPEN for t _{PZH} BiasV = GND	Figure 2 Figure 3
t _{PZL}	Output Enable Time, SEL to A, B	7.0	30.0		35.0	ns	$V_I = 7V$ for t_{PZL} BiasV = 3V	Figure 2 Figure 3
t _{PHZ}	Output Disable Time, SEL to A, B	1.0	6.9		7.3	ns	$V_I = OPEN \text{ for } t_{PHZ}$ BiasV = GND	Figure 2 Figure 3
t _{PLZ}	Output Disable Time, SEL to A, B	1.0	7.7		7.7	ns	$V_I = 7V$ for t_{PLZ} , BiasV = 3V	Figure 2 Figure 3

Note 7: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance).

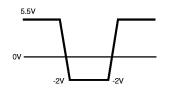

Capacitance (Note 8)

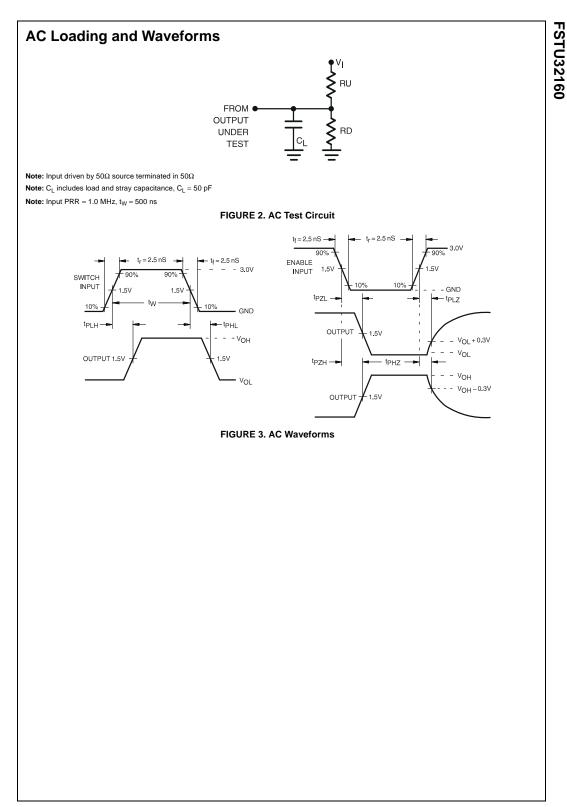
Symbol	Parameter	Тур	Мах	Units	Conditions
C _{IN}	Control pin Input Capacitance	4		pF	$V_{CC} = 5.0V$
CI/O OFF	Input/Output Capacitance "OFF State"	8		pF	$V_{CC} = 5.0V$, Switch OFF
Note 8: T _A = +25°	C, f = 1 MHz, Capacitance is characterized bu	t not tested.			

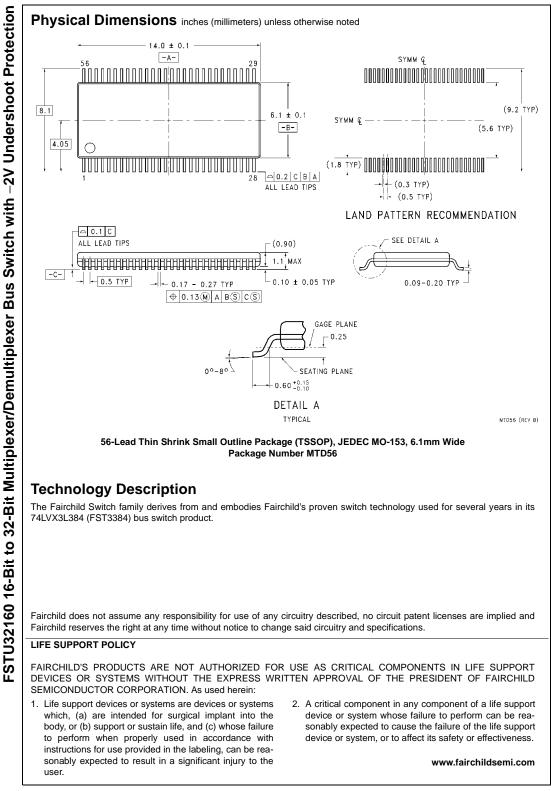
Undershoot Characteristic (Note 9)

Symbol	Parameter	Min	Тур	Max	Units	Conditions
V _{OUTU}	Output Voltage During Undershoot	2.5	V _{OH} – 0.3		V	Figure 1

Note 9: This test is intended to characterize the device's protective capabilities by maintaining output signal integrity during an input transient voltage undershoot event.






Device Test Conditions

Parameter	Value	Units
V _{IN}	see Waveform	V
$R_1 = R_2$	100K	Ω
V _{TRI}	11.0	V
V _{CC}	5.5	V

Transient Input Voltage (V_{IN}) Waveform

