Features

- AC input response
- High current transfer ratio
(CTR : MIN. 600% at $\mathrm{I}_{\mathrm{F}}= \pm 1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ce}}=2 \mathrm{~V}$)
- High input-output isolation voltage:
(Viso : 5,000V $\mathrm{Vms}_{\text {m }}$)
- Compact dual-in-line package

LTV-8141: 1-channel type
LTV-8241: 2-channel type
LTV-8441 : 4-channel type

- UL approved (No. E113898)
- TUV approved (No.R9653630)
- CSA approved (No. CA91533-1)
* FIMKO approved (No. 193422)
- NEMKO approved (No. P96103013)
- DEMKO approved (No. 303986)
- SEMKO approved (No. 9646047/01-30)
- Options available :
-Leads with $0.4^{\prime \prime}(10.16 \mathrm{~mm})$ spacing (M Type)
-Leads bends for surface mounting(S Type)
-Tape and Reel of Type I for SMD(Add"-TA"Suffix)
-Tape and Reel of Type II for SMD(Add"-TA1"Suffix)

Applications

1. System appliances, measuring instruments.
2. Industrial robots.
3. Copiers, automatic vending machines.
4. Signal transmission between circuits of different potentials and impedances.

Package Dimensions

Note:
1.Year date code.
2. 2-digit work week.
3. Factory code shall be marked (Z : Taiwan, Y : Thailand).
4. All dimensions are in millimeters (inches).
5. Tolerance is $\pm 0.25 \mathrm{~mm}$ (.010") unless otherwise noted.

6 . Specifications are subject to change without notice.

Ordering Information

Part Number	Package	Safety Standard Approval	Application part number
LTV-8141 LTV-8141M LTV-8141S LTV-8141S-TA LTV-8141S-TA1	4-pin DIP 4-pin (leads with 0.4 " spacing) 4-pin (lead bends for surface mount) 4-pin (tape and reel packaging of type I) 4-pin (tape and reel packaging of type II)	- UL approved - TUV approved - CSA approved - FIMKO approved - NEMKO approved - SEMKO approved - DEMKO approved	LTV-8141
LTV-8241 LTV-8241M LTV-8241S LTV-8241S-TA LTV-8241S-TA1	8-pin DIP 8 -pin (leads with 0.4 " spacing) 8 -pin (lead bends for surface mount) 8 -pin (tape and reel packaging of type I) 8-pin (tape and reel packaging of type II)		LTV-8241
LTV-8441 LTV-8441M LTV-8441S LTV-8441S-TA LTV-8441S-TA1	16-pin DIP 16 -pin (leads with 0.4 " spacing) 16-pin (lead bends for surface mount) 16-pin (tape and reel packaging of type I) 16-pin (tape and reel packaging of type II)		LTV-8441
LTV8141-V LTV8141M-V LTV8141S-V LTV8141STA-V LTV8141STA1-V	4-pin DIP 4-pin (leads with 0.4 " spacing) 4-pin (lead bends for surface mount) 4-pin (tape and reel packaging of type I) 4-pin (tape and reel packaging of type II)	- VDE approved	LTV-8141
LTV8241-V LTV8241M-V LTV8241S-V LTV8241STA-V LTV8241STA1-V	8-pin DIP 8 -pin (leads with 0.4 " spacing) 8 -pin (lead bends for surface mount) 8 -pin (tape and reel packaging of type I) 8-pin (tape and reel packaging of type II)		LTV-8241
LTV8441-V LTV8441M-V LTV8441S-V LTV8441STA-V LTV8441STA1-V	16-pin DIP 16 -pin (leads with $0.4 "$ spacing) 16-pin (lead bends for surface mount) 16-pin (tape and reel packaging of type I) 16-pin (tape and reel packaging of type II)		LTV-8441

Parameter		Symbol	Rating	Unit
Input	Forward Current	IF	± 50	mA
	Power Dissipation	P	70	mW
Output	Collector-Emitter Voltage	Vceo	35	V
	Emitter-Collector Voltage	Veco	6	V
	Collector Current	Ic	80	mA
	Collector Power Dissipation	Pc	150	mW
Total Power Dissipation		Ptot	200	mW
Operating Temperature		Topr	-30~+100	${ }^{\circ} \mathrm{C}$
Storage Temperature		Tstg	-55~+125	${ }^{\circ} \mathrm{C}$
*1.Isolation Voltage		Viso	5	KV rms
*2.Soldering Temperature		Tsol	260	${ }^{\circ} \mathrm{C}$

*1. AC for 1 minute, R.H. $=40 \sim 60 \%$

- Isolation voltage shall be measured using the following method.
(1)Short between anode and cathode on the primary side and between collector, emitter and base on the secondary side.
(2)The isolation voltage tester with zero-cross circuit shall be used.
(3)The waveform of applied volttage shall be a sine wave.
*2. For 10 seconds.

Electrical/Optical Characteristics

(Ta=25 ${ }^{\circ} \mathrm{C}$)

Parameter		Symbol	Min.	Typ.	Max.	Unit	Conditions
$\begin{aligned} & \stackrel{亏}{亏} \\ & \text { 든 } \end{aligned}$	Forward Voltage	V_{F}	-	1.2	1.4	V	$\mathrm{IF}= \pm 20 \mathrm{~mA}$
	Terminal Capacitance	C_{t}	-	50	250	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{KHz}$
H믈0	Collector Dark Current	Iceo	-	-	1	$\mu \mathrm{A}$	V ce $=10 \mathrm{~V}$
	Collector-Emitter Breakdown Voltage	BVceo	35	-	-	V	$\mathrm{Ic}=0.1 \mathrm{~mA}$
	Emitter-Collector Breakdown Voltage	BVeco	6	-	-	V	$\mathrm{IE}=10 \mu \mathrm{~A}$
	Collector Current	Ic	6	-	75	mA	$\mathrm{IF}= \pm 1 \mathrm{~mA}$ VCE= 2 V
	*Current Transfer Ratio	CTR	600	-	7,500	\%	
	Collector-emitter Saturation Voltage	VcE(sat)	-	0.8	1.0	V	$\mathrm{IF}= \pm 20 \mathrm{~mA}, \mathrm{Ic}=5 \mathrm{~mA}$
	Isolation Resistance	Riso	50	100	-	$G \Omega$	DC500V, 40~60\% R.H.
	Floating Capacitance	Cf_{f}	-	0.6	1.0	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
	Cut-off Frequency	fc	1	6	-	KHz	$\begin{aligned} & \mathrm{VCE}=5 \mathrm{~V}, \mathrm{IC}=2 \mathrm{~mA} \\ & \mathrm{RL}=100 \Omega,-3 \mathrm{~dB} \end{aligned}$
	Response Time (Rise)	tr	-	60	300	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{VCE}=2 \mathrm{~V}, \mathrm{IC}=10 \mathrm{~mA} \\ & \mathrm{RL}=100 \Omega \\ & \hline \end{aligned}$
	Response Time (Fall)	tf	-	53	250	$\mu \mathrm{s}$	

*CTR $=\frac{\mathrm{IC}}{\mathrm{IF}} \times 100 \%$

Typical Electrical/Optical Characteristic Curves ($25^{\circ} \mathrm{C}$ Ambient Temperature Unless Otherwise Noted)

Fig. 1 Forward Current vs. Ambient Temperature

Fig. 3 Collector-emitter Saturation Voltage vs. Forward Current

Fig. 5 Current Transfer Ratio vs. Forward Current

Fig. 2 Collector Power Dissipation vs. Ambient Temperature

Fig. 4 Forward Current vs. Forward Voltage

Fig. 6 Collector Current vs.
Collector-emitter Voltage

Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature

Fig. 9 Collector Dark Current vs.
Ambient Temperature

Fig. 11 Frequency Response

Fig. 8 Collector-emitter Saturation Voltage vs. Ambient Temperature

Fig. 10 Response Time vs. Load Resistance

Test Circuit for Response Time

Test Circuit for Frequency Response

