
1/8October 2001

ABSTRACT
This document reports the results of the porting of a MainProfile@MainLevel MPEG-2 decoder on ST120.
This is the standard notably used for DVD.

CONCLUSION
The optimized application needs 228.4 MCycles/s to decode 25 PAL frames/s in the case of M=3, N=12,
bitrate=15 Mbps. In this evaluation we assume that all the data are into the XY internal memories (ideal
DMA).

AN1482
APPLICATION NOTE

MPEG2 Main Profile Video Decoding on ST100

By Maurizio COLOMBO

AN1482 - APPLICATION NOTE

2/8

TABLE OF CONTENTS PAGE

1 OVERVIEW ON MAIN PROFILE DECODING .. 3

2 PROFILING OF THE CODE .. 4

2.1 WANG IDCT .. 4

2.2 ADD_PREDICTION() .. 4

2.3 HUFFMAN DECODING/INV QUANT/INVERSE SCAN .. 4

2.4 TEMPORAL PREDICTION.. 5

2.5 BITSTREAM PARSING... 5

3 PERFORMANCE OF THE DECODER .. 6

4 REFERENCES ... 7

5 ACRONYMS AND DEFINITIONS .. 7

AN1482 - APPLICATION NOTE

3/8

1 - OVERVIEW ON MAIN PROFILE DECODING

Figure 1 shows the block diagram of the Main Profile decoder [1]. The basic building blocks are the same
as for Simple Profile, but some additional features are supported in Main Profile. In particular, Main Profile
defines a new type of pictures, called B (bidirectionally interpolated), that are predicted from past and
future I/P images. This implies an increased complexity of the Temporal Prediction block to support
bidirectional prediction.
A Main Profile decoder must support all the prediction modes (up to six) and the two possible picture
structures (frame pictures and field pictures).
Block IDCT/Add Prediction can be performed either in field or frame mode.
The corresponding bitstream parser, represented by the block headers and motion vectors decoding,
must be able to support the syntax corresponding to the above features.
Huffman decoding must support MPEG-1 backward compatibility (two special routines have been added
for this, since MPEG-1 syntax uses different escape codes) and two types of coefficients scan (zig-zag
and alternate).
The following chapters depict all these basic blocks, showing their performance on the optimized
assembly implementation for ST120. However, the reference C source is the one developed by the
MPEG Software Simulation Group [2].

Figure 1 : Main Profile decoder block diagram

IDCT

Temporal

FRAME BUFFER

B Huffman
decoding/inverse

quantization/inverse
scan

Headers and motion
 vectors decoding

I
T
S
T
R
E
A
M Prediction

Add
Prediction

AN1482 - APPLICATION NOTE

4/8

2 - PROFILING OF THE CODE

2.1 - Wang IDCT
This block has been taken directly from the Simple Profile implementation. Since inverse zig-zag/
alternate scan is already performed by the Huffman decoding/IQ block, there’s no need to unroll the first
loop of IDCT, and the code size is significantly reduced. The module wang_idct.st1* is made by two
functions, one for intra IDCT (that includes clipping and add 128) and one for non-intra IDCT. This module
uses 32 bytes of read-only data memory for constants (IDCT_const). The code size and performances
are reported in Table 1.

This algorithm can be replaced by the high performance Huang IDCT, whose ST120 implementation is
now available.
* For more information on the MPEG2 code implemented on ST120 please contact
st100.marketing@st.com.

2.2 - Add_Prediction()
This function is located in the module add_pred.st1. Its purpose is to compute the sum of two 8x8 blocks
and clip the result in the range [0,255]. In fact, one of the two blocks is the predictor computed by
temporal prediction and the other is the difference block read from bitstream. The result overwrites the
predictor, and this highlights a global optimization that is very effective: Add_Prediction() is applied only
to the decoded blocks that are non-null, based on the coded block pattern read from bitstream. The
frame/field DCT coding is dealt with at this time: the Add_Prediction() routine can read the predictor both
in frame or field mode, and the result is written in the same fashion. Table 2 shows the number of clock
cycles needed for this function in both frame/field cases and its code size.

2.3 - Huffman Decoding/Inv Quant/Inverse Scan
This is the function that takes from the input bitstream the Huffman variable length codes of the data
coefficients for one 8x8 block and decodes them. Then, inverse quantization and reverse zig-zag/
alternate scan are applied. Another task performed by this function, is to clear the result block before
starting decoding. This is needed since the decoding process affects only the non-zero coefficients. Four
of these functions are needed to build a Main Profile decoder, that is MPEG-1 backward compatible. In
particular, we need different functions for intra and non-intra blocks, since they use different Huffman
tables. MPEG-1 backward compatibility requires to deal with a different kind of escape codes, whose
peculiarity is the fact that they do not have a fixed length (there is a sort of "escape in escape" increasing
the level of difficulty).
The computational cost of the four functions cannot be given as standalone, since it depends on the
number of symbols that are decoded. The only interesting figure is the number of cycles/symbol, that is
the same for all the four functions (Table 3).

Table 1 : Wang IDCT (code size and cycles)

Function Code Size (Bytes) Cycles/8x8 Block

Wang_idct() 1104 530

Wang_idct_inter() 996 469

Table 2 : Add prediction (code size and cycles)

Function Code Size (Bytes) Cycles/8x8 Block
Frame DCT Coding

Cycles/8x8 Block
Field DCT Coding

Add_Prediction() 612 117 115

AN1482 - APPLICATION NOTE

5/8

Table 3 : Huffman decoding/Inverse quantization/Inverse scan

All these functions are located in the module getblk.st1. The Huffman look-up tables needed for these
functions takes 1732 bytes (read-only data memory).

2.4 - Temporal Prediction
This function is basically made of three parts: the memory read from the external frame buffer, the
computation of horizontal and/or vertical interpolation and/or the average with the previously computed
predictor in case of bidirectional interpolation or dual prime prediction.
The first task is left to a DMA, that will be programmed with the address of the predictor just after the
macroblock header decoding, based on the prediction type information and on the motion vectors. For P
skipped macroblocks, the DMA will directly copy the predictor into the current frame buffer.
So, the profiling reported here only includes the computational cost of the interpolation and/or average.
An efficient implementation should envisage the use of a "powered" DMA, able to make itself this task, in
particular to cope with B skipped macroblocks. For these on, a simple memory copy is not enough, since
a B skipped macroblock inherit the prediction mode and the vectors from the previous one, whereas a P
skipped macroblock is simply patched with the corresponding one in the previous image.
Anyway, the software complexity of this task is computed here for the sake of completeness and for an
eventual implementation on a small video format. There are several possible combinations of
interpolations/average. The following Table 4 gives the number of clock cycles needed for a 16x16
luminance macroblock computation, in the different cases. The function is located in the module
motion_comp.st1 and its name is form_component_prediction().

The code size for this function is of 5524 bytes. A read-only table of 48 bytes is needed for the jump at the
beginning (switch structure). The algorithm for the chroma components is the same, but the cost is
reduced by a factor 4 for each component.

2.5 - Bitstream Parsing
This block represents a set of small functions that are used basically to decode the macroblock headers
(containing information about the contents of the macroblock and the motion vectors). These functions
are located in the modules mb_headers.st1 (macroblock_modes(), Get_coded_block_pattern(),
Get_macroblock_address_increment()) and motion.st1(motion_vector() and motion_vectors()).
The code size of these functions amounts to 2336 bytes. The data memory needed for the Huffman
tables is of 584 bytes. The computational cost of these functions cannot be provided as standalone, since
it depends on the bitstream to be decoded.

Function Code Size (Bytes) Cycles/Symbol

Decode_MPEG1_Intra_Block() 1272 24

Decode_MPEG1_Non_Intra_Block() 1040 24

Decode_MPEG2_Intra_Block() 1184 24

Decode_MPEG2_Non_Intra_Block() 896 24

Table 4 : Temporal prediction : the different cases

Operation Clock Cycles For 16x16 Luminance

Simple copy 125

Copy with average 240

Vertical interpolation 274

Vertical interpolation + average 434

Horizontal interpolation 271

Horizontal interpolation + average 431

Vert+Hor interpolation 623

Vert+Hor interpolation + average 815

AN1482 - APPLICATION NOTE

6/8

3 - PERFORMANCE OF THE DECODER

In this paragraph are presented and analyzed the performance measures of the Main Profile decoder in
a real case. The sequence considered is made of 25 frames of renata (in PAL format), coded with M=3
(distance between consecutive P images) and N=12 (distance between consecutive I images). The
encoder used to generate these test bitstreams uses recursive motion estimation. Several different
bitrates have been considered, also in order to understand the dependency of the functions from the
bitrate (Table 5).

Once measured these data, the computational cost for the different video formats is obtained
proportionally (Table 6). The bitrate indicated is referred to PAL format, and it must be scaled for the other
formats.

Table 7 shows a summary of the code size of the different modules.

The total size does not include the I/O libraries (printf, fread, fwrite etc.), the functions used for dma
emulation (module dma.c), the functions used to store to file the decoded sequence (store.c) and the
startup code (crt0.o-456 bytes).

Table 5 : Profiling of the code (Mcycles/s) for PAL format

 2 Mbps 4 Mbps 10 Mbps 15 Mbps

Wang IDCT 29.8 46.5 85.3 94.8

Add Prediction 0.5 3.5 8.9 10.4

Temporal prediction 26.6 29.5 30.2 30.2

Huffman dec/IQ/inv scan 8.1 18.2 47.8 70.4

Others (parsing, main) 21.2 22.1 22.6 22.6

TOTAL 86.2 119.8 194.8 228.4

Table 6 : Different video formats (Mcycles/s)

Resolution PAL@2Mbps PAL@4Mbps PAL@10Mbps PAL@15Mbps

PAL (720x576) 86.2 119.8 194.8 228.4

2/3D1 (544x576) 64.65 89.85 146.1 171.3

1/2D1 (352x576) 43.1 59.9 97.4 114.2

CIF (352x288) 21.55 29.95 48.7 57.1

Table 7 : code size of the complete application

Module Code Size (Bytes) Code Type

Huffman decoding 4392 SLIW

Wang IDCT 2100 SLIW

Add prediction 612 SLIW

Temporal prediction 5524 SLIW

Parsing 2336 GP32

Headers 8736 GP32

Others 11136 GP32

TOTAL 34836 SLIW/GP32

Function
Bitrate

AN1482 - APPLICATION NOTE

7/8

Table 8 shows a summary for data memory usage.

4 - REFERENCES

– [1] ISO/IEC 13818-2 Recommendation ITU-T H.262, Standard Video MPEG-2, 1995
– [2] S.Eckart, C.Fogg, MPEG-2 Encoder/Decoder Version 1.2, July 1996, Copyright 1996, MPEG Soft-

ware Simulation Group (http://www.mpeg.org/MSSG)

5 - ACRONYMS AND DEFINITIONS

I - images : Intra-Frame encoded images
P - images : Temporally-Predicted images
B - images : Bidirectionally-Interpolated images
M : Distance between consecutive P-images
N : Distance between consecutive I-images
DMA : Direct Memory Access device
(I)DCT : (Inverse) Discrete Cosine Transform
IQ : Inverse Quantization

Table 8 : Data memory usage

Data type Memory size (bytes)

Stack 3072

Bitstream buffer 2048

Current macroblock 384

Predictor 724

Huffman tables 2316

Others (variables) 5108

TOTAL 13652

