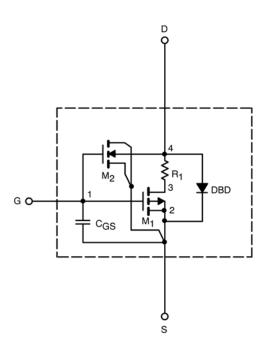


P-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

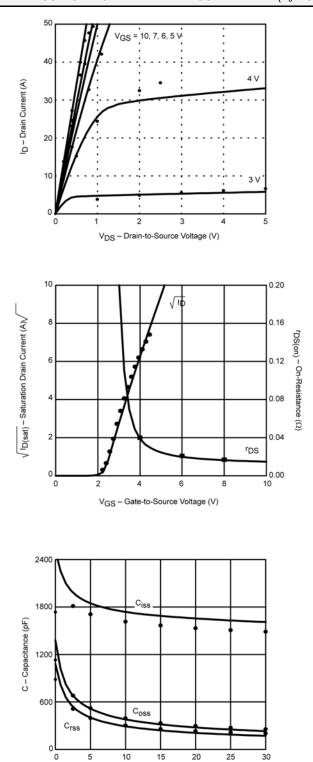
The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

SUBCIRCUIT MODEL SCHEMATIC

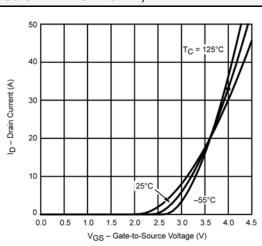
A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

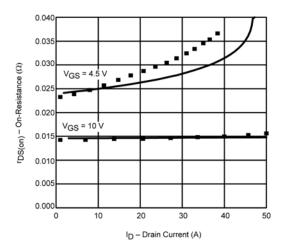
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

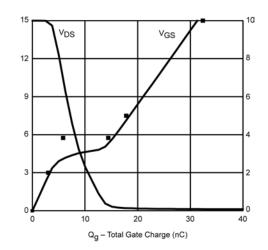
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static			•		
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = -250 μ A	1.9		V
On-State Drain Current ^a	I _{D(on)}	V_{DS} = -5 V, V_{GS} = -10 V	309		А
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = -10 V, I _D = -9.1 A	0.015	0.015	Ω
		V_{GS} = -4.5 V, I _D = -6.9 A	0.025	0.025	
Forward Transconductance ^a	9 _{fs}	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -9.1 \text{ A}$	22	24	S
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = -2.1 A, $V_{\rm GS}$ = 0 V	-0.81	-0.80	V
Dynamic ^b			•		
Total Gate Charge	Qg	V_{DS} = -15 V, V_{GS} = -10 V, I_D = -9.1 A	32	33	nC
Gate-Source Charge	Q _{gs}		5.8	5.8	
Gate-Drain Charge	Q _{gd}		8.6	8.6	
Turn-On Delay Time	t _{d(on)}	V_{DD} = -15 V, R _L = 15 Ω I _D \cong -1 A, V _{GEN} = -10 V, R _G = 6 Ω I _F = -2.1 A, di/dt = 100 A/µs	19	10	ns
Rise Time	tr		14	15	
Turn-Off Delay Time	t _{d(off)}		184	110	
Fall Time	t _f		35	70	
Source-Drain Reverse Recovery Time	t _{rr}		55	60	


Notes a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

SPICE Device Model Si4435BDY


Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

V_{DS} – Drain-to-Source Voltage (V)

