

Replaces April 2000 version, DS5081-2.2

ACR300SG33

Fast Turn-on Asymmetric Thyristor

DS5081-2.4 August 2000

APPLICATIONS

- Capacitor Discharge
- Pulse Power Applications

FEATURES

The ACR300SG33 is a high voltage asymmetric thyristor which has exceptionally fast turn-on characteristics.

VOLTAGE RATINGS

Type Number	Repetitive Peak Off-state Voltage V _{DRM} V	Repetitive Peak Reverse Voltage V _{RRM} V
ACR300SG33	3300	20

Lower voltage grades available.

 $\begin{array}{l} \mbox{KEY PARAMETERS} \\ \mbox{V}_{_{DRM}} & 3300 V \\ \mbox{I}_{_{T(AV)}} & 660 A \\ \mbox{I}_{_{TSM}} & 6500 A \\ \mbox{dVdt} & 3000 V/\mu s \\ \mbox{dI/dt} & 2000 A/\mu s \\ \mbox{t}_{on} & 700 ns \end{array}$

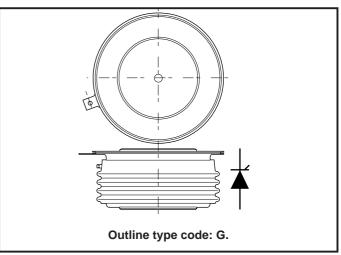


Fig. 1 See Package Details for further information

CURRENT RATINGS

Symbol	Parameter	Conditions	Max.	Units				
Double Side Cooled								
I _{T(AV)}	Mean on-state current	Half wave resistive load, $T_{case} = 80^{\circ}C$	660	A				
I _{T(RMS)}	RMS value	$T_{case} = 80^{\circ}C$	1040	A				
Ι _τ	Continuous (direct) on-state current	$T_{case} = 80^{\circ}C$	890	A				
Single Side Cooled (Anode side)								
I _{T(AV)}	Mean on-state current	Half wave resistive load, $T_{case} = 80^{\circ}C$	470	А				
I _{T(RMS)}	RMS value	$T_{case} = 80^{\circ}C$	745	A				
Ι _τ	Continuous (direct) on-state current	$T_{case} = 80^{\circ}C$	570	А				

SURGE RATINGS

Symbol	Parameter	Conditions	Max.	Units
I _{TSM}	Surge (non-repetitive) on-state current	10ms half sine; T _{case} = 125°C	6	kA
l ² t	I ² t for fusing	V _R = 0	180	kA²s

THERMAL AND MECHANICAL DATA

Symbol	Parameter	Conditions		Min.	Max.	Units
R _{th(j-c)}	Thermal resistance - junction to case	Double side cooled	dc	-	0.042	°C/W
		Single side cooled	Anode dc	-	0.070	°C/W
			Cathode dc	-	0.092	°C/W
	Thermal resistance - case to heatsink	Clamping force 7.0kN with mounting compound	Double side	-	0.018	°C/W
R _{th(c-h)}			Single side	-	0.036	°C/W
	Virtual junction temperature	On-state (conducting)		-	150	°C
T_{vj}		Reverse (blocking)		-	125	°C
T _{stg}	Storage temperature range			-55	125	°C
-	Clamping force			6.0	8.0	kN

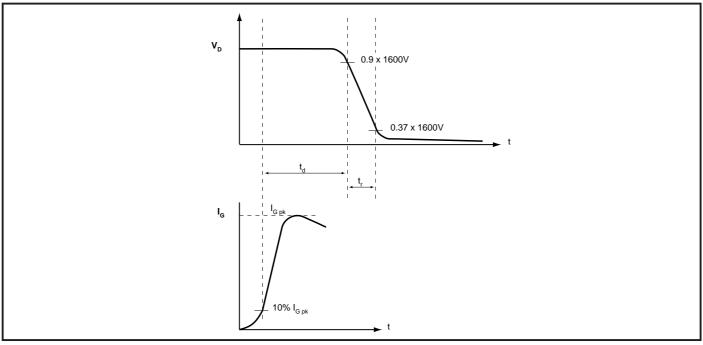


Fig.1 Turn-on time measurement

DYNAMIC CHARACTERISTICS

Symbol	Parameter	Conditions	Min.	Max.	Units
V _{TM}	Maximum on-state voltage	At 1000A peak, T _{case} = 25°C		2.0	V
I _{RRM} /I _{DRM}	Peak reverse and off-state current	At V_{RRM}/V_{DRM} , $T_{case} = 125^{\circ}C$	-	60	mA
dV/dt	Linear rate of rise of off-state voltage	To $V_{D} = 2000V$, Gate open circuit, $T_{j} = 125^{\circ}C$	3000	-	V/µs
dl/dt	Rate of rise of on-state current	From V_{DRM} to 125A Gate source 30V, 10 Ω Gate rise time = 100ns, T_j = 125°C	-	2000	A/µs
V _{T(TO)}	Threshold voltage	At $T_{v_i} = 125^{\circ}C$		1.19	V
r _T	On-state slope resistance	At $T_{vj} = 125^{\circ}C$	-	0.81	mΩ
I _L	Latching current	$V_{\rm D} = 5V, T_{\rm j} = 25^{\circ}C$	-	600	mA
I _H	Holding current	$I_{\rm TM} = 500$ A, $I_{\rm T} = 5$ A, $T_{\rm j} = 25^{\circ}$ C		300	mA
t _d	Delay time	$V_{D} = 3000V$ Gate source = 30V, 10 Ω $T_{j} = 25^{\circ}C$	-	350	ns
		Gate rise time = 100ns $T_j = 70^{\circ}C$	-	-	ns
t,	Rise time	See Fig.1. T _j = 25 - 70°C.	-	50	ns

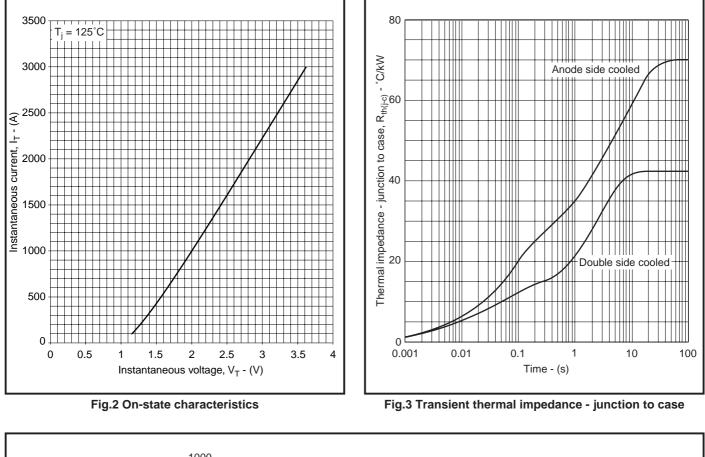
GATE TRIGGER CHARACTERISTICS AND RATINGS

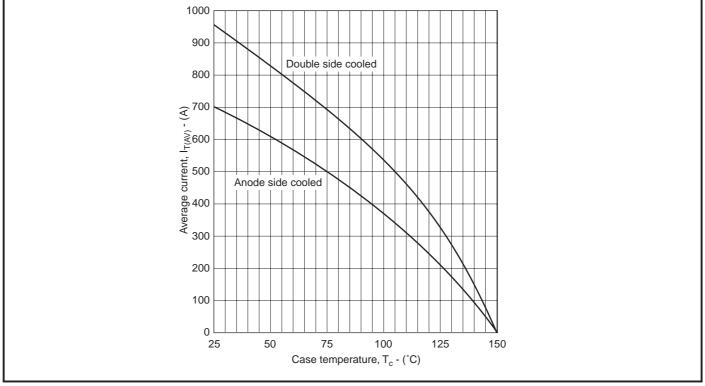
Symbol	Parameter	Conditions		Тур.	Max.	Units
V _{GT}	Gate trigger voltage	$V_{\text{DWM}} = 12V, R_{\text{L}} = 6\Omega, T_{\text{case}} = 25^{\circ}\text{C}$		-	5	V
I _{GT}	Gate trigger current	$V_{\text{DWM}} = 12V, R_{\text{L}} = 6\Omega, T_{\text{case}} = 25^{\circ}\text{C}$		-	500	mA
V _{FGM}	Peak forward gate voltage	-		-	40	V
V _{rgm}	Peak reverse gate voltage	-		-	10	V
I _{FGM}	Peak forward gate current	-		-	20	А
P _{GM}	Peak gate power	-		-	40	w
P _{G(AV)}	Average gate power	Average time 10ms max Forwa	ırd	-	10	W

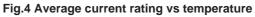
CURRENT CARRYING CAPABILITY AFTER CHIP SHORT CIRCUIT

In the event of a chip short-circuit due to excess anode-cathode voltage, the device will handle a high continuous RMS fault current without significant damage. Rating details are as follows:

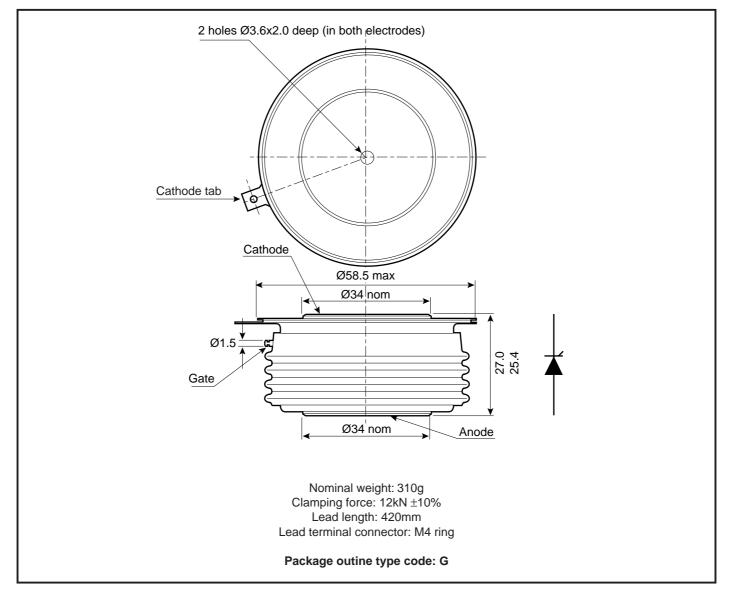
Conditions:


- 1. Device single or double side cooled.
- 2. Case temperature to be held at 200 $^\circ\text{C}$ or less.
- 3. A suitable high temperature clamp to be used.
- 4. Chip fault site resistance assumed to be $3m\Omega\pm$ 10%.


Continuous current capability: 300A RMS, ac or dc in either direction.


ACR300SG33

CURVES



PACKAGE DETAILS

For further package information, please contact your local Customer Service Centre. All dimensions in mm, unless stated otherwise. DO NOT SCALE.

POWER ASSEMBLY CAPABILITY

The Power Assembly group was set up to provide a support service for those customers requiring more than the basic semiconductor, and has developed a flexible range of heatsink and clamping systems in line with advances in device voltages and current capability of our semiconductors.

We offer an extensive range of air and liquid cooled assemblies covering the full range of circuit designs in general use today. The Assembly group continues to offer high quality engineering support dedicated to designing new units to satisfy the growing needs of our customers.

Using the latest CAD methods our team of design and applications engineers aim to provide the Power Assembly Complete Solution (PACs).

DEVICE CLAMPS

Disc devices require the correct clamping force to ensure their safe operation. The PACS range includes a varied selection of preloaded clamps to suit all of our manufactured devices. Types available include cube clamps for single side cooling of 'T' 22mm and 'E' 30mm discs, and bar clapms right up to 83kN fo our 'Z' 100mm thyristors and diodes.

Clamps are available for single or double side cooling, with high insulation versions for high voltage assemblies.

Please refer to our application note on device clamping, AN4839

HEATSINKS

The Power Assembly group has its own proprietary range of extruded aluminium heatsinks. They have been designed to optimise the performance of Dynex semiconductors. Data with respect to air natural, forced air and liquid cooling (with flow rates) is available on request.

For further information on device clamps, heatsinks and assemblies, please contact your nearest sales representative or customer service office.

Datasheet Annotations:

Dynex Semiconductor annotate datasheets in the top right hard corner of the front page, to indicate product status. The annotations are as follows:-

Target Information: This is the most tentative form of information and represents a very preliminary specification. No actual design work on the product has been started.

Preliminary Information: The product is in design and development. The datasheet represents the product as it is understood but details may change.

Advance Information: The product design is complete and final characterisation for volume production is well in hand.

No Annotation: The product parameters are fixed and the product is available to datasheet specification.

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform so f sale, which are available on request.

All brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.