White LED/OLED Step-Up Converter

FEATURES

- Adjustable Output Voltage
- Drives OLEDs or White LEDs
- 30V High Voltage Switch
- 1 MHz Switching Frequency
- Tiny Inductors and Capacitors
- Tiny SOT23-5 Package

APPLICATIONS

- OLED Applications
- Cell Phones
- Digital Cameras
- PDAs, Laptops
- MP3 Players
- GPS

GENERAL DESCRIPTION

The ACT6311 step-up DC/DC converter is optimized for driving OLEDs or white LEDs. It can provide an output voltage up to 24 V . The device is capable of driving up to seven LEDs in series from a Lithium-Ion battery, with inherent current matching and uniform brightness.

The ACT6311 incorporates a 30 V high voltage switch. The device operates at 1 MHz and allows the use of few external components. The ACT6311 is available in the tiny SOT23-5 package.

Figure 1. Typical Application Circuit

Figure 2. Application as White LED Driver

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE	PINS	TOP MARK	PACKING
ACT6311UC-T	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SOT23-5	5	YCXB	TAPE \& REEL

PIN CONFIGURATION

PIN DESCRIPTION

PIN NUMBER	PIN NAME	PIN DESCRIPTION
1	SW	Switch Output. Connect this pin to the inductor and the Schottky diode. To reduce EMI, minimize the PCB trace path between this pin and the input bypass capacitor.
2	G	Ground.
3	FB	Feedback Input. This pin is referenced to 1.24 V.
4	$\overline{\text { SHDN }}$	Shutdown Control. Connect to a logic high to enable the device. Connect to a logic low to disable the device. Never leave the pin unconnected.
5	IN	Supply Input. Bypass to G with a capacitor $1 \mu \mathrm{~F}$ capacitor or higher.

ACT6311

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

PARAMETER	VALUE	UNIT
IN, $\overline{\text { SHDN }}$ Voltage	-0.3 to 6	V
SW Voltage	-0.3 to 30	V
FB Voltage	-0.3 to $\mathrm{V}_{\mathbb{N}}+0.3$	V
Maximum Power Dissipation (derate $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$)	0.4	W
Junction to Ambient Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$	190	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction Temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec$)$	300	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\text {SHON }}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage Range			2.5		5.5	V
Feedback Voltage	$\mathrm{V}_{\text {FB }}$	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$	1.18	1.24	1.30	V
FB Input Current				50		nA
Supply Current		$\overline{\mathrm{SHDN}}=\mathrm{IN}$		0.7	1.5	mA
Supply Current in Shutdown		$\overline{\mathrm{SHDN}}=\mathrm{G}$		0	1	$\mu \mathrm{~A}$
Switching Frequency	$\mathrm{f}_{\text {SW }}$		0.8	1	1.2	MHz
Maximum Duty Cycle	$\mathrm{D}_{\text {MAX }}$		80	85		$\%$
Switch Current Limit	$\mathrm{I}_{\text {LIM }}$	75% Duty Cycle		320		mA
Switch On Voltage		$\mathrm{I}_{\text {SW }}=200 \mathrm{~mA}$		350		mV
Switch Leakage Current		$\mathrm{V}_{\text {SW }}=20 \mathrm{~V}, \overline{\text { SHDN }=\mathrm{G}}$			10	$\mu \mathrm{~A}$
$\overline{\text { SHDN }}$ Logic High Threshold			1.6			V
$\overline{\text { SHDN Logic Low Threshold }}$					0.4	V
$\overline{\text { SHDN }}$ Input Current				0	1	$\mu \mathrm{~A}$

Figure 3. Functional Block Diagram

FUNCTIONAL DESCRIPTION

The ACT6311 is a high efficiency step-up DC/DC converter that employs a current-mode, fixed frequency pulse-width modulation (PWM) architecture with excellent line and load regulation. Figure 3 shows the functional block diagram of the IC. The flip-flop is set at the start of each oscillator cycle, and turns on the power switch. During this on time, the switch current level is sensed and added to a ramp signal, and the resulting sum is compared with the output of
the error amplifier. If the error comparator output is high, the flip-flop is reset and the power switch turns off. Thus, the peak inductor current level is controlled by the error amplifier output, which is integrated from the difference between FB input and the 1.24 V reference point.

The ACT6311 operates at a constant switching frequency for output current higher than 4 mA . If the output current decreases further, the IC will enter pulse skipping mode, resulting in some low frequency ripple.

ACT6311

APPLICATION INFORMATION

INDUCTOR SELECTION

Table 1. Recommended Inductors

PART NUMBER	CURRENT RATING (mA)	DCR (Ω)	SUPPLIER
CDRH3D16-220	350	0.5	Sumida
ELJPC220KF	160	4.0	Panasonic
LQH3C220	250	0.7	Murata
LEM2520-220	125	5.5	Taiyo Yuden

A $22 \mu \mathrm{H}$ inductor is typically used for the ACT6311. The inductor should have low DC resistance (DCR) and losses at 1 MHz . See Table 1 for examples of small size inductors.

CAPACITOR SELECTION

The ACT6311 only requires a $1 \mu \mathrm{~F}$ input capacitor and a $1 \mu \mathrm{~F}$ output capacitor for most applications. Ceramic capacitors are ideal for these applications. For best performance, use X5R and X7R type ceramic capacitors, which possess less degradation in capacitance over voltage and temperature ranges.

DIODE SELECTION

The ACT6311 requires a fast recovery Schottky diode as the rectifier. Select a low forward voltage drop Schottky diode with a forward current (IF) rating of 100 mA to 200 mA and a sufficient peak repetitive reverse voltage (VRRM). Some suitable Schottky diodes are listed in Table 2.

Table 2. Recommended Schottky Diodes

PART NUMBER	IF (mA)	VRRM (V)	SUPPLIER
CMDSH-3	100	30	Central
CMDSH2-3	200	30	Central
BAT54	200	30	Zetex

OLED APPLICATION

Figure 1 shows the feedback network necessary to set the output voltage. Select the proper ratio of the two feedback resistors R1 and R2 based on the desired output voltage. Typically choose R1 = 20k Ω and determine R2 from the output voltage:

$$
\begin{equation*}
R 2=R 1\left(\frac{V_{\text {OUT }}}{1.24 V}-1\right) \tag{1}
\end{equation*}
$$

WHITE LED APPLICATION

The LED current is determined by the value of the feedback resistor R1. Because the FB input of the IC is regulated to 1.24 V , the LED current is determined by $\mathrm{I}_{\text {LED }}=1.24 \mathrm{~V} / \mathrm{R} 1$. The value of R1 for different LED currents is shown in Table 3.

Table 3. R1 Resistor Value Selection

$\mathbf{I}_{\text {LED }}(\mathbf{m A})$	$\mathbf{R 1}(\Omega)$
5	246
10	124
12	103.3
15	82.7
20	62

To improve efficiency, resistors R2 and R3 can be connected as shown in Figure 4 to lower the effective feedback voltage.

The following are dimming control methods for the ACT6311 series white LED application.

1. PWM Signal Driving SHDN

When a PWM signal is connected to the $\overline{\text { SHDN }}$ pin, the ACT6311 is turned on and off alternately under the control of the PWM signal. The current through the LEDs is either zero or full scale. By changing the duty cycle of the PWM signal (typically 1 kHz to 10 kHz), a controlled average current is obtained.

2. DC Voltage Control

Figure 5 shows an application in which a DC voltage is used to adjust the LED current. The LED current increases when $V_{D C}$ is lower than V_{FB} and decreases when V_{DC} is higher than V_{FB}. In Figure 5, the LED current range of 15 mA to 0 mA is controlled by $\mathrm{V}_{\mathrm{DC}}=0 \mathrm{~V}$ to 2 V .

3. Filtered PWM Control

Figure 6 shows an application using a filtered PWM signal to control dimming.
4. Logic Control

A logic signal can be used to adjust the LED current in a discrete step, as shown in Figure 7.

Figure 4. Current Setting for White LED Application

Figure 5. DC Voltage Controlled Dimming

Figure 6. Filtered PWM Controlled Dimming

Figure 7. Logic Controlled Dimming

START-UP AND INRUSH CURRENT

In order to facilitate quick startup, a soft-start circuit is not incorporated into the ACT6311. When the IC is first turned on with no external soft-start circuit, the peak inrush current is about 400 mA . Figure 8 shows an implementation for soft-start. When soft-start and dimming controls are used simultaneously, a low frequency PWM signal (less than 10 kHz) or the methods in Figures 5, 6, and 7 should be used.

OPEN-CIRCUIT PROTECTION (WHITE LEDS)

If one of the LEDs is disconnected, the FB voltage drops to zero and the IC switches at maximum duty cycle. This results in a high voltage that may exceed the SW voltage rating. To limit this voltage, use a Zener diode as shown in Figure 9. The Zener voltage must be larger than the total forward voltage of the LEDs and the current rating should be higher than 0.1 mA .

BOARD LAYOUT

To reduce EMI, minimize the area and path length of all traces connected to SW. Use a ground plane under the switching regulator and connect R1 directly to the G pin of the IC.

ACT6311

Figure 8. Soft-Start Circuit

Figure 9. Open-Circuit Protection

ACT6311

TYPICAL PERFORMANCE CHARACTERISTICS

(Circuit of Figure 1, unless otherwise specified.)

ACT6311

TYPICAL PERFORMANCE CHARACTERISTICS CONT＇D

（Circuit of Figure 1，unless otherwise specified．）

6000－レレع91つも

PACKAGE OUTLINE

SOT23-5 PACKAGE OUTLINE AND DIMENSIONS

SYMBOL	DIMENSION IN MILLIMETERS		DIMENSION IN INCHES			
	MIN	MAX	MIN	MAX		
	1.050	1.250	0.041	0.049		
A1	0.000	0.100	0.000	0.004		
A2	1.050	1.150	0.041	0.045		
b	0.300	0.400	0.012	0.016		
c	0.100	0.200	0.004	0.008		
D	2.820	3.020	0.111	0.119		
E	1.500	1.700	0.059	0.067		
E1	2.650	2.950	0.104			
e	0.950 TYP		0.037			
TYP						
L	1.800	2.000	0.071			
L1	0.700		REF	0.079		
θ	0.300		0.600	0.012		0.024
0°	8°	0°		8°		

Active-Semi, Inc. reserves the right to modify the circuitry or specifications without notice. Users should evaluate each product to make sure that it is suitable for their applications. Active-Semi products are not intended or authorized for use as critical components in life-support devices or systems. Active-Semi, Inc. does not assume any liability arising out of the use of any product or circuit described in this data sheet, nor does it convey any patent license.

Active-Semi and its logo are trademarks of Active-Semi, Inc. For more information on this and other products, contact sales@active-semi.com or visit www.active-semi.com. For other inquiries, please send to:

