

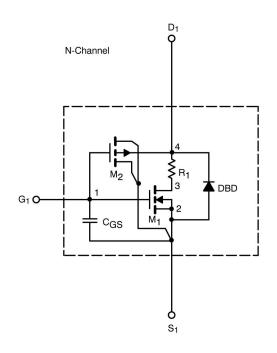
SPICE Device Model Si6801DQ

Vishay Siliconix

N- and P-Channel Dual Enhancement-Mode MOSFET

CHARACTERISTICS

- N- and P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n- and p-channel vertical DMOS. The model subcircuit is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0 to 5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

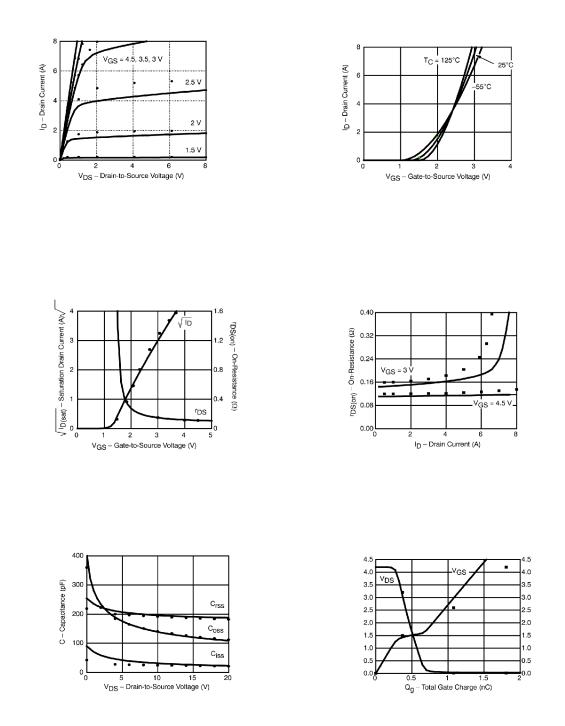
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

lodel Si6801DQ

Vishay Siliconix

Parameter	Symbol	Test Conditions		Typical	Unit
Static	-				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V,V_{GS},I_{D}=250\;\mu A$	N-Ch	1.02	V
		$V_{DS}=~V,~V_{GS},~I_{D}=-250~\mu A$	P-Ch	1.15	
On-State Drain Current ^a	I _{D(on)}	V_{DS} 5 V, V_{GS} = 4.5 V	N-Ch	23	А
		$V_{DS} = -5 V, V_{GS} = -4.5 V$	P-Ch	18	
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 1.9 \text{ A}$	N-Ch	0.112	Ω
		$V_{GS} = -4.5 \text{ V}, I_D = -1.7 \text{ A}$	P-Ch	0.154	
		$V_{\rm GS}=3~V,~I_{\rm D}=1.5~A$	N-Ch	0.149	
		$V_{GS} = -3 V$, $I_D = -1.3 A$	P-Ch	0.217	
Forward Transconductance ^a	g _{fs}	$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 1.9 \text{ A}$	N-Ch	5	S
		$V_{DS} = -15 \text{ V}, \text{ I}_{D} = -1.7 \text{ A}$	P-Ch	4.1	
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = 1 A, $V_{\rm GS}$ = 0 V	N-Ch	0.77	V
		$I_{\rm S}=-1$ V, $V_{\rm GS}=0$ V	P-Ch	-0.77	
Dynamic ^ь					
Total Gate Charge	Q _g		N-Ch	1.6	nC
		N-Channel $V_{DS} = 3.5 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 0.3 \text{ A}$ P-Channel $V_{DS} = -3.5 \text{ V}, V_{GS} = -4.5 \text{ V}, I_D = -0.3 \text{ A}$	P-Ch	3	
Gate-Source Charge	Q _{gs}		N-Ch	0.41	
			P-Ch	0.76	
Gate-Drain Charge	Q _{gd}		N-Ch	0.26	
			P-Ch	0.70	
Turn-On Delay Time	t _{d(on)}	N Changel	N-Ch	5.2	ns
			P-Ch	6	
Rise Time	tr	N-Channel $V_{DD} = 3.5 \text{ V}, \text{ R}_{L} = 11.5 \Omega$	N-Ch	6.2	
		$I_D \cong 0.3$ A, V_{GEN} = 4.5 V, R_G = 6 Ω	P-Ch	10	
Turn-Off Delay Time	t _{d(off)}	$V_{DD} = -3.5 \text{ V}, \text{ R}_{L} = 11.5 \Omega$ $I_{D} \cong -0.3 \text{ A}, \text{ V}_{GEN} = -4.5 \text{ V}, \text{ R}_{G} = 6 \Omega$	N-Ch	9	
			P-Ch	11	
Fall Time	t _f		N-Ch	15	
			P-Ch	22	
Source-Drain Reverse Recovery Time	t _{rr}	I _F = 1 A, di/dt = 100 A/μs	N-Ch	31	
		$I_F = -1 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	P-Ch	30	

Notes

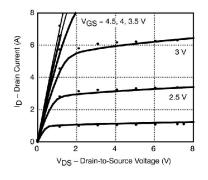

a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%.

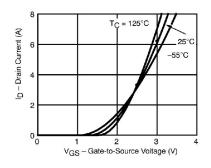
SPICE Device Model Si6801DQ Vishay Siliconix

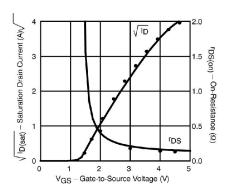
COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

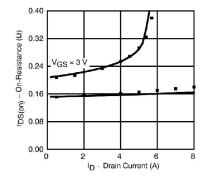
N-CHANNEL MOSFET

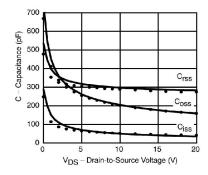
Note: Dots and squares represent measured data.

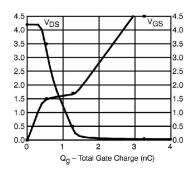

Document Number: 71023 22-May-04




Vishay Siliconix




P-CHANNEL MOSFET



Note: Dots and squares represent measured data.