## **SKDT** 100

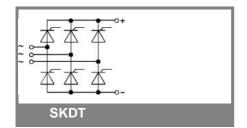


## SEMIPONT<sup>®</sup> 2

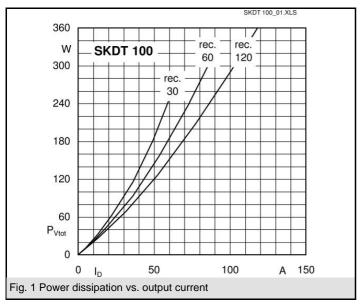
# Controllable Bridge Rectifiers

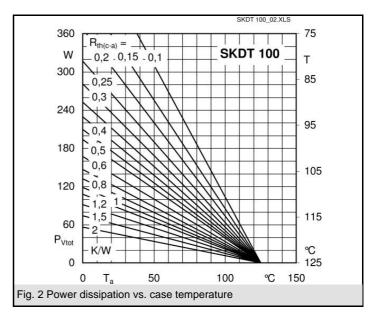
#### **SKDT 100**

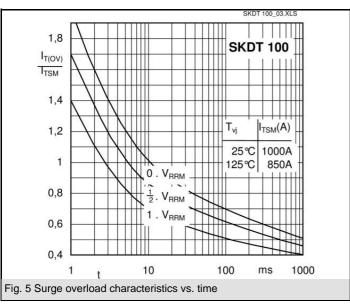
#### **Features**

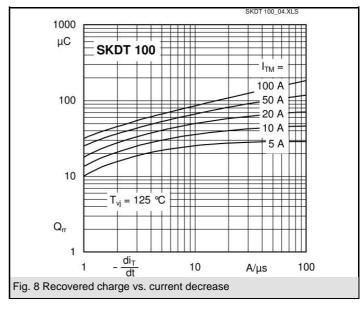

- Fully controlled three phase bridge rectifier
- Robust plastic case with screw terminals
- Large, isolated base plate
- Blocking voltage to 1400V
- High surge currents
- · Easy chassis mounting
- UL recognized, file no. E 63 532

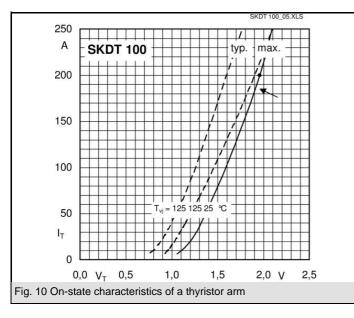
### **Typical Applications**

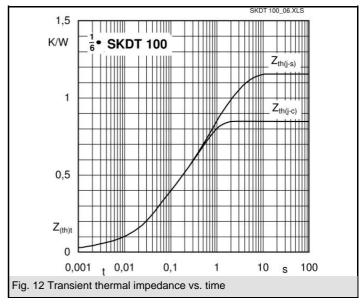

- For DC drives with a fixed direction of rotation
- Controlled field rectifiers for DC motors
- Controlled battery charger rectifiers
- 1) Painted metal shield of minimum 250 x 250 x 1 mm:  $R_{th(c-a)}$  = 1,8 K/W

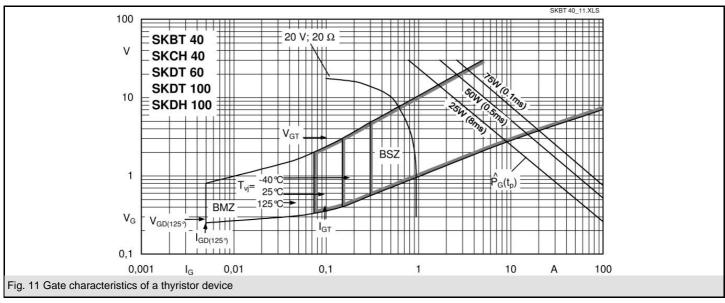

| V <sub>RSM</sub> | $V_{RRM}, V_{DRM}$ | I <sub>D</sub> = 100 A (full conduction) |
|------------------|--------------------|------------------------------------------|
| V                | V                  | (T <sub>c</sub> = 84 °C)                 |
| 800              | 800                | SKDT 100/08                              |
| 1200             | 1200               | SKDT 100/12                              |
| 1400             | 1400               | SKDT 100/14                              |
|                  |                    |                                          |
|                  |                    |                                          |
|                  |                    |                                          |

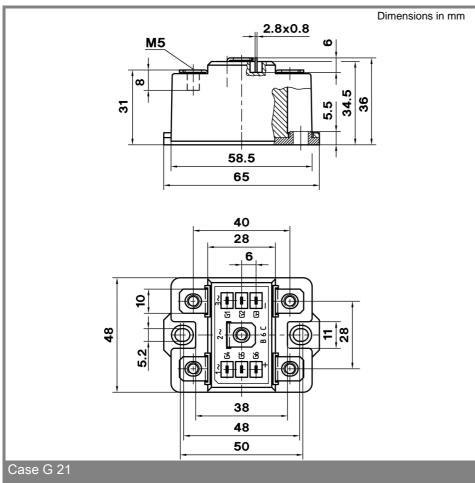

| Symbol                              | Conditions                                                                       | Values            | Units |
|-------------------------------------|----------------------------------------------------------------------------------|-------------------|-------|
| I <sub>D</sub>                      | T <sub>c</sub> = 85 °C                                                           | 98                | Α     |
|                                     | T <sub>a</sub> = 45 °C; chassis <sup>1)</sup>                                    | 20                | Α     |
|                                     | T <sub>a</sub> = 45 °C; P13A/125                                                 | 25                | Α     |
|                                     | T <sub>a</sub> = 45 °C; P1A/120                                                  | 45                | Α     |
| I <sub>TSM</sub> , I <sub>FSM</sub> | T <sub>vj</sub> = 25 °C; 10 ms                                                   | 1000              | Α     |
|                                     | $T_{vj} = 125 ^{\circ}\text{C}; 10 \text{ms}$                                    | 850               | Α     |
| i²t                                 | $T_{vj} = 25  ^{\circ}\text{C}; 8,3 \dots 10  \text{ms}$                         | 5000              | A²s   |
|                                     | $T_{vj}$ = 125 °C; 8,3 10 ms                                                     | 3600              | A²s   |
| V <sub>T</sub>                      | T <sub>vi</sub> = 25 °C; I <sub>T</sub> =200 A                                   | max. 1,95         | V     |
| $V_{T(TO)}$                         | $T_{vj} = 125 ^{\circ}\text{C};$                                                 | max. 1            | V     |
| r <sub>T</sub>                      | $T_{vj} = 125 ^{\circ}\text{C}$                                                  | max. 4,5          | mΩ    |
| I <sub>DD</sub> ; I <sub>RD</sub>   | $T_{vj}$ = 125 °C; $V_{DD}$ = $V_{DRM}$ ; $V_{RD}$ = $V_{RRM}$                   | max. 15           | mA    |
| t <sub>gd</sub>                     | $T_{vj} = 25 \text{ °C; } I_G = 1 \text{ A; } di_G/dt = 1 \text{ A/}\mu\text{s}$ | 1                 | μs    |
| t <sub>gr</sub>                     | $V_D = 0.67 \cdot V_{DRM}$                                                       | 1                 | μs    |
| (dv/dt) <sub>cr</sub>               | T <sub>vj</sub> = 125 °C                                                         | max. 500          | V/µs  |
| (di/dt) <sub>cr</sub>               | T <sub>vi</sub> = 125 °C; f = 50 Hz                                              | max. 50           | A/µs  |
| t <sub>q</sub>                      | $T_{vj} = 125 ^{\circ}\text{C}; \text{ typ.}$                                    | 80                | μs    |
| I <sub>H</sub>                      | $T_{vj} = 25 ^{\circ}\text{C}$ ; typ. / max.                                     | 100 / 200         | mA    |
| IL                                  | $T_{vj}$ = 25 °C; $R_G$ = 33 $\Omega$                                            | 250 / 400         | mA    |
| V <sub>GT</sub>                     | T <sub>vi</sub> = 25 °C; d.c.                                                    | min. 3            | V     |
| I <sub>GT</sub>                     | $T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$                                      | min. 150          | mA    |
| $V_{GD}$                            | $T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$                                     | max. 0,25         | V     |
| $I_{GD}$                            | $T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$                                     | max. 5            | mA    |
| R <sub>th(j-c)</sub>                | per thyristor / diode                                                            | 0,85              | K/W   |
|                                     | total                                                                            | 0,141             | K/W   |
| R <sub>th(c-s)</sub>                | total                                                                            | 0,05              | K/W   |
| T <sub>vi</sub>                     |                                                                                  | - 40 <b>+</b> 125 | °C    |
| T <sub>stg</sub>                    |                                                                                  | - 40 + 125        | °C    |
| V <sub>isol</sub>                   | a. c. 50 Hz; r.m.s.; 1 s / 1 min.                                                | 3600 ( 3000 )     | V     |
| M <sub>s</sub>                      | to heatsink                                                                      | 5                 | Nm    |
| M <sub>t</sub>                      | to terminals                                                                     | 3                 | Nm    |
| m                                   |                                                                                  | 165               | g     |
| Case                                | SKDT                                                                             | G 21              |       |





## **SKDT** 100














This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.