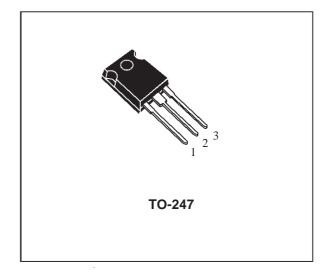
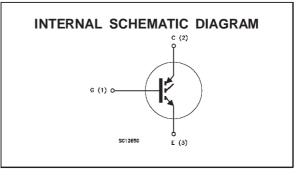


STGW30NB60H

N-CHANNEL 30A - 600V TO-247 PowerMESHTM IGBT

TYPE	Vces	V _{CE(sat)}	Ι _C
STGW30NB60H	600 V	< 2.8 V	30 A


- HIGH INPUT IMPEDANCE (VOLTAGE DDIV(EN))
- (VOLTAGE DRIVEN)
- LOW ON-VOLTAGE DROP (VCESAT)
- LOW GATE CHARGE
- HIGH CURRENT CAPABILITY
- VERY HIGH FREQUENCY OPERATION
- OFF LOSSES INCLUDE TAIL CURRENT


DESCRIPTION

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESHTM IGBTs, with outstanding perfomances. The suffix "H" identifies a family optimized to achieve very low switching times for high frequency applications (<120kHz).

APPLICATIONS

- HIGH FREQUENCY MOTOR CONTROLS
- WELDING EQUIPMENTS
- SMPS AND PFC IN BOTH HARD SWITCH AND RESONANT TOPOLOGIES

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{GS} = 0)	600	V
V _{ECR}	Emitter-Collector Voltage	20	V
V _{GE}	Gate-Emitter Voltage	± 20	V
lc	Collector Current (continuous) at $T_c = 25$ °C	60	A
lc	Collector Current (continuous) at $T_c = 100$ °C	30	A
I _{CM} (•)	Collector Current (pulsed)	240	A
P _{tot}	Total Dissipation at $T_c = 25$ °C	190	W
	Derating Factor	1.52	W/ºC
Tstg	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

ABSOLUTE MAXIMUM RATINGS

(•) Pulse width limited by safe operating area

THERMAL DATA

ſ	R _{thj-case}	Thermal	Resistance	Junction-case	Max	0.66	°C/W
	R _{thj-amb}	Thermal	Resistance	Junction-ambient	Max	30	oC/W
	R _{thc-h}	Thermal	Resistance	Case-heatsink	Тур	0.1	°C/W

ELECTRICAL CHARACTERISTICS (T_j = 25 $^{\circ}$ C unless otherwise specified) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collector-Emitter Breakdown Voltage	$I_{C} = 250 \ \mu A$ $V_{GE} = 0$	600			V
I _{CES}	Collector cut-off $(V_{GE} = 0)$				10 100	μΑ μΑ
I _{GES}	Gate-Emitter Leakage Current (V _{CE} = 0)	$V_{GE} = \pm 20 \text{ V} \qquad V_{CE} = 0$			± 100	nA

ON (*)

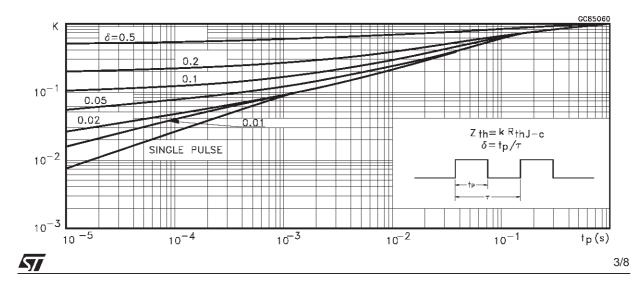
Symbol	Parameter	Test Conditions		Тур.	Max.	Unit
$V_{GE(th)}$	Gate Threshold Voltage	$V_{CE} = V_{GE}$ I _C = 250 µA	3		5	V
V _{CE(SAT)}	Collector-Emitter Saturation Voltage	$ \begin{array}{lll} V_{GE} = \ 15 \ V & I_C = \ 30 \ A \\ V_{GE} = \ 15 \ V & I_C = \ 30 \ A & T_j = \ 125 \ ^oC \end{array} $		2.2 1.8	2.8	V V

DYNAMIC

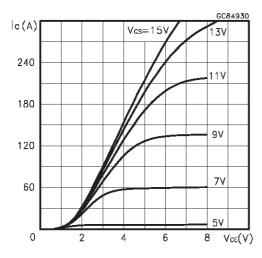
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
gfs	Forward Transconductance	V _{CE} =25 V I _C = 30 A		20		S
C _{ies} C _{oes} C _{res}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{CE} = 25 V$ f = 1 MHz $V_{GE} = 0$		2300 250 60		pF pF pF
Q _G Q _{GE} Q _{GC}	Total Gate Charge Gate-Emitter Charge Gate-Collector Charge	$V_{CE} = 480 \text{ V}$ $I_{C} = 30 \text{ A}$ $V_{GE} = 15 \text{ V}$		150 15 72		nC nC nC
I _{CL}	Latching Current		120			A

SWITCHING ON

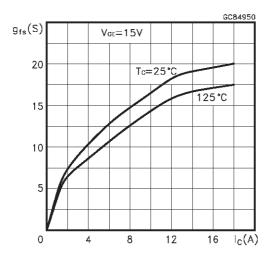
Symbol	Parameter	Test Con	ditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Delay Time Rise Time	V _{CC} = 480 V V _{GE} = 15 V	$I_{C} = 30 \text{ A}$ $R_{G} = 10\Omega$		15 75		ns ns
(di/dt) _{on}	Turn-on Current Slope	V _{CC} = 480 V R _G = 10 Ω	I _C = 30 A V _{GE} = 15 V		760		A/µs
Eon	Turn-on Switching Losses	T _j = 125 °C			850		μJ

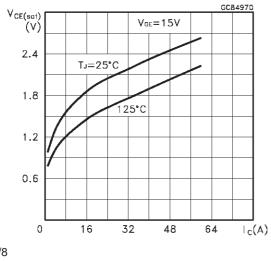

57

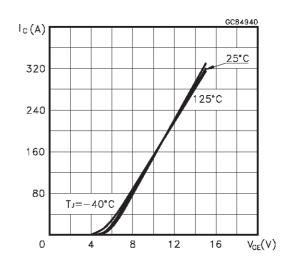
ELECTRICAL CHARACTERISTICS (continued) SWITCHING OFF

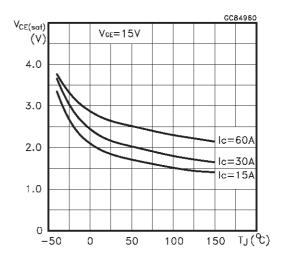

Symbol	Parameter	Test Condition	ons	Min.	Тур.	Max.	Unit
$\begin{array}{c} t_c \\ t_r(v_{off}) \\ t_d(off) \\ t_f \\ E_{off}(^{**}) \\ E_{ts} \end{array}$	Cross-Over Time Off Voltage Rise Time Delay Time Fall Time Turn-off Switching Loss Total Switching Loss	$V_{CC} = 480 V$ $R_{GE} = 10 \Omega$	I _C = 30 A V _{GE} = 15 V		150 40 210 90 1.10 1.8		ns ns ns mJ mJ
$\begin{array}{c} t_c \\ t_r(v_{off}) \\ t_d(o_{ff}) \\ t_f \\ E_{off}(^{**}) \\ E_{ts} \end{array}$	Cross-Over Time Off Voltage Rise Time Delay Time Fall Time Turn-off Switching Loss Total Switching Loss	VCC = 480 V R _{GE} = 10 Ω T _j = 125 °C	I _C = 30 A V _{GE} = 15 V		250 70 250 160 1.6 2.45		ns ns ns mJ mJ

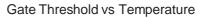
(•) Pulse width limited by max. junction temperature
(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %
(**)Losses Include Also The Tail (Jedec Standardization)

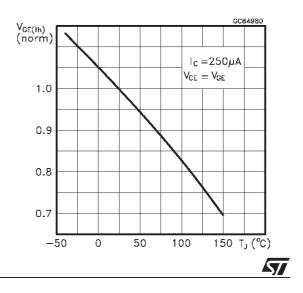

Thermal Impedance

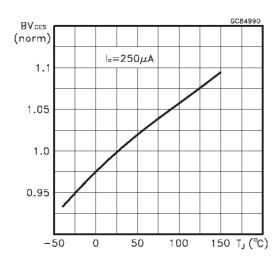

Output Characteristics


Transconductance

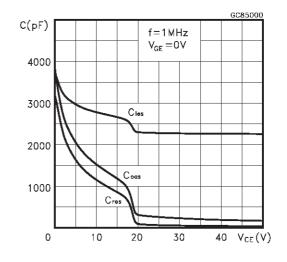

Collector-Emitter On Voltage vs Collector Current

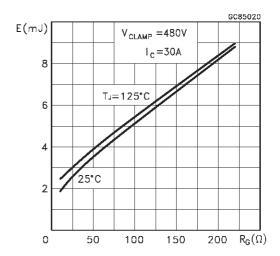



Transfer Characteristics

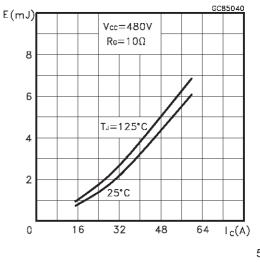


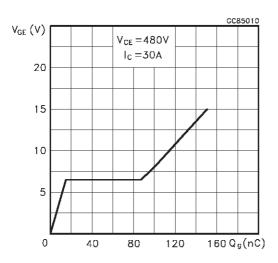
Collector-Emitter On Voltage vs Temperature

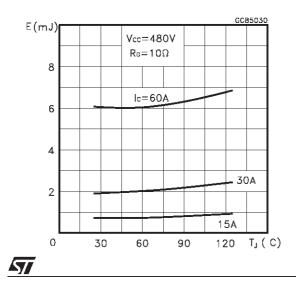




Normalized Breakdown Voltage vs Temperature


Capacitance Variations


Total Switching Losses vs Gate Resistance


Total Switching Losses vs Collector Current

Total Switching Losses vs Temperature

Switching Off Safe Operating Area

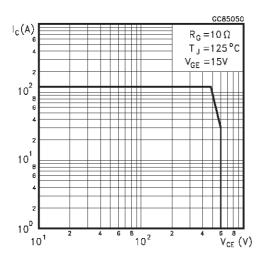
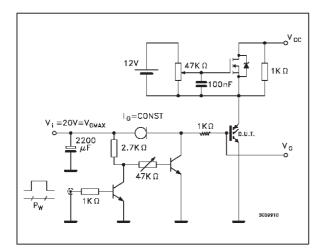



Fig. 1: Gate Charge test Circuit

____**_**___

Fig. 2: Test Circuit For Inductive Load Switching

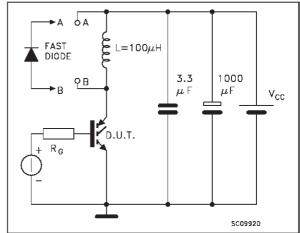
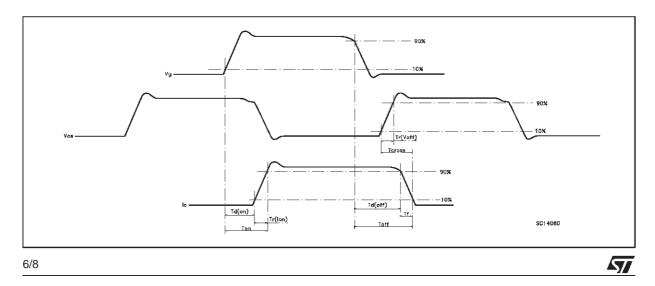
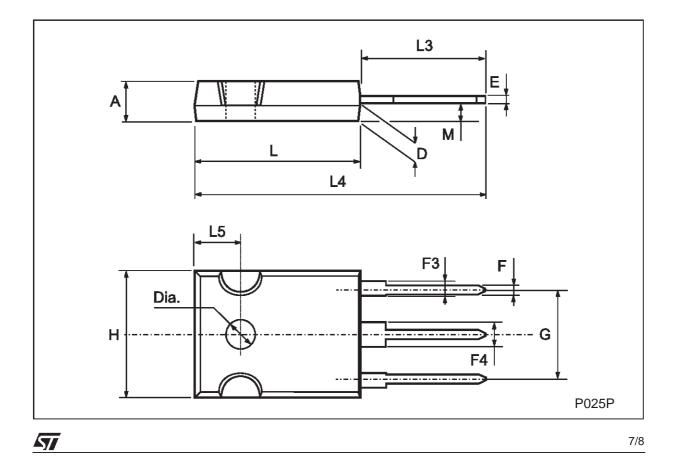




Fig. 3 Switching Waveforms

DIM.		mm			inch	
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.7		5.3	0.185		0.209
D	2.2		2.6	0.087		0.102
E	0.4		0.8	0.016		0.031
F	1		1.4	0.039		0.055
F3	2		2.4	0.079		0.094
F4	3		3.4	0.118		0.134
G		10.9			0.429	
Н	15.3		15.9	0.602		0.626
L	19.7		20.3	0.776		0.779
L3	14.2		14.8	0.559		0.582
L4		34.6			1.362	
L5		5.5			0.217	
М	2		3	0.079		0.118

Information furnished is believed to be accurate and reliable. However, STMicroelectonics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third partes which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

8/8

57