

ADM7008

Octal Ethernet 10/100M PHY

Datasheet Version 1.0

ADMtek.com.tw

Information in this document is provided in connection with ADMtek products. ADMtek may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". ADMtek reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them

The products may contain design defects or errors know as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request. To obtain latest documentation please contact you local ADMtek sales office or visit ADMtek's website at http://www.ADMtek.com.tw

*Third-party brands and names are the property of their respective owners.

© Copyright 2003 by ADMtek Incorporated All Rights Reserved

ADMtek Inc. V1.0

About this Manual

Intended Audience

Structure

This Data sheet contains 6 chapters

Chapter 1 Product Overview

Chapter 2 Interface Description

Chapter 3 Function Description

Chapter 4. Register Description

Chapter 5. Electrical Specification

Chapter 6. Packaging

Revision History

Date	Version	Change	
23 January 2003	1.0	First release of ADM7008	

Customer Support

ADMtek Incorporated, 2F, No.2, Li-Hsin Rd., Science-based Industrial Park, Hsinchu, 300, Taiwan, R.O.C.

Sales Information

Tel + 886-3-5788879 Fax + 886-3-5788871

Table of Contents

Chapter 1	Product Overview	1-1
-	Overview	
1.2 F	eatures	1-2
	Block Diagram	
	Abbreviations	
1.5 C	Conventions	1-5
1.5.1	Data Lengths	1-5
1.5.2	Register Type Descriptions	1-5
1.5.3	Pin Type Descriptions	
Chapter 2	Interface Description	
2.1 P	in Diagram	2-1
2.2 P	in Description	2-2
2.2.1	Twisted Pair Interface, 32 pins	2-2
2.2.2	Ground and Power, 20 pins	2-2
2.2.3	Mode Setting	2-2
2.2.4	Clock Input Select	
2.2.5	Clock Input, 3 pins	2-3
2.2.6	RMII/SMII Interface, 48 pins	2-3
2.2.7	ATPG Signals, 2 pins	2-16
2.2.8	Reset Pin	2-16
2.2.9	Control Signals, 3 pins	2-16
2.2.10	LED Interface, 2 pins	2-17
2.2.11	Regulator Control, 2 pins	2-17
2.2.12	Digital Power/Ground, 13 pins	2-17
Chapter 3	Function Description	3-1
3.1 1	0/100M PHY Block	3-2
3.1.1	100Base-X Module	3-2
3.1.2	100Base-TX Receiver	3-2
3.1.3	100Base-TX Transmitter	3-7
3.1.4	100Base-FX Receiver	3-7
3.1.5	100Base-FX Transmitter	3-8
3.1.6	10Base-T Module	3-8
3.1.7	Operation Modes	3-8
3.1.8	Manchester Encoder/Decoder	3-8
3.1.9	Transmit Driver and Receiver	3-9
3.1.10	Smart Squelch	3-9
3.1.11		
3.1.12	Collision Detection	3-10
3.1.13	Jabber Function	3-10
3.1.14	Link Test Function	3-10
3.1.15	Automatic Link Polarity Detection	3-11
3.1.16	Clock Synthesizer	3-11
3.1.17		
3.1.18	O	
3.1.19	Auto Negotiation and Speed Configuration	3-13

ADMtek Inc.

3.2 MA	AC Interface	3-13
3.2.1	Reduced Media Independent Interface (RMII)	3-14
3.2.2	Receive Path for 100M	
3.2.3	Receive Path for 10M	3-16
3.2.4	Transmit Path for 100M	3-16
3.2.5	Transmit Path for 10M	3-16
3.2.6	Serial and Source Synchronous Media Independent Interface	3-17
3.2.7	100M Receive Path	
3.2.8	10M Receive Path	3-19
3.2.9	100M Transmit Path	3-20
3.2.10	10M Transmit Path	3-20
3.3 LE	D Display	3-21
3.3.1	Single Color LED	3-21
3.3.2	Dual Color LED	3-23
3.3.3	Serial Output LED Status	<i>3-23</i>
3.3.4	<i>RMII Mode (RSMODE1 = 1)</i>	3-24
3.3.5	SMII/SS $SMII$ $Mode$ $(RSMODE1 = 0)$	3-24
3.4 Ma	nagement Register Access	
3.4.1	Preamble Suppression	
3.4.2	Reset Operation	
3.5 Pov	wer Management	
3.5.1	Medium Detect Power Saving	
3.5.2	Transmit Power Saving	
3.6 Vo	Itage Regulator	
Chapter 4 R	egister Description	4-1
4.1 Reg	gister Mapping	4-1
4.2 Re	gister Bit Mapping	4-2
4.2.1	Register #0h Control Register	4-2
4.2.2	Register #1h – Status Register	4-2
4.2.3	Register #2h – PHY ID Register (002E)	4-2
4.2.4	Register #3h – PHY ID Register (CC11)	
4.2.5	Register #4h – Advertisement Register	
4.2.6	Register #5h – Link Partner Ability Register	4-2
4.2.7	Register #6h – Auto Negotiation Expansion Register	
4.2.8	Register #7h – # Fh Reserved	
4.2.9	Register #10h – PHY Configuration Register	4-2
4.2.10	Register #11h – 10M Configuration Register	4-3
4.2.11	Register #12h – 100M Configuration Register	<i>4-3</i>
4.2.12	Register #13h – LED Configuration Register	4-3
4.2.13	Register #14h – Interrupt Enable Register	4-3
4.2.14	Register #16h – PHY Generic Status Register	
4.2.15	Register #17h – PHY Specific Status Register	
4.2.16	Register #18h – Recommend Value Storage Register	
4.2.17	Register #19h – Interrupt Status Register	
4.2.18	Register #1dh – Receive Error Counter	
4.2.19	Register #1eh – Chip ID (8888)	

ADM7008 ii

ADMtek Inc.

4.2.20	Register #1fh –Total Interrupt Status (only For Port 0)	4-4
4.3 Re	gister Description	4-4
4.3.1	Control (Register 0h)	4-4
4.3.2	Status (Register 1h)	4-6
4.3.3	PHY Identifier Register (Register 2h)	
4.3.4	PHY Identifier Register (Register 3h)	
4.3.5	Advertisement (Register 4h)	
4.3.6	Auto Negotiation Link Partner Ability (Register 5h)	
4.3.7	Auto Negotiation Expansion Register (Register 6h)	
4.3.8	Register Reserved (Register 7h-Fh)	
4.3.9	Generic PHY Configuration Register (Register 10h)	
4.3.10	PHY 10M Module Configuration Register (Register 11h)	
4.3.11	PHY 100M Module Control Register (Register 12h)	
4.3.12	LED Configuration Register (Register 13h)	
4.3.13	Interrupt Enable Register (Register 14h)	
4.3.14	PHY Generic Status Register (Register 16h)	
4.3.15	PHY Specific Status Register (Register 17h)	
4.3.16	PHY Recommend Value Status Register (Register 18h)	
4.3.17	Interrupt Status Register (Register 19h)	
4.3.18	Receive Error Counter Register (Register 1Dh)	
4.3.19	Chip ID Register (Register 1Fh)	
4.3.20	Per port Interrupt and Revision ID Register (Register 1Eh)	
Chapter 5 E	lectrical Specification	
-	Characterization.	
5.1.1	Absolute Maximum Rating	5-1
5.1.2	Recommended Operating Conditions	
5.1.3	DC Electrical Characteristics for 3.3V Operation	
5.2 AC	Characterization	
5.2.1	XI/OSCI (Crystal/Oscillator) Timing	
	/III Timing	
5.3.1	REFCLK Input Timing (When REFCLK SEL is set to 1)	
5.3.2	REFCLK Output Timing (When REFCLK_SEL is set to 0)	
5.3.3	RMII Transmit Timing	
5.3.4	RMII Receive Timing	
5.4 SM	III Clock Timing	
5.4.1	REFCLK Input Timing (When REFCLK SEL is set to 1)	
5.4.2	REFCLK Output Timing (When REFCLK_SEL is set to 1)	
5.4.3	SMII/SS SMII Transmit Timing	
5.4.4	SMII/SS SMII Receive Timing	
5.5 Sei	rial Management Interface (MDC/MDIO) Timing	5-11
	wer On Configuration Timing	
Chanter 6 P		6_1

ADM7008

List of Figures

Figure 1-1 ADM7008 Block Diagram	1-3
Figure 2-1 ADM7008 Pin Assignment	
Figure 3-1 ADM7008 Switch Application (10/100M TP Mode)	3-1
Figure 3-2 100Base-X Block Diagram and Data Path	3-3
Figure 3-3 10Base-T Block Diagram and Data Path	
Figure 3-4 RMII Signal Diagram	3-14
Figure 3-5 RMII Reception Without Error	3-15
Figure 3-6 RMII Reception with False Carrier (100M Only)	3-15
Figure 3-7 RMII Reception with Symbol Error	3-15
Figure 3-8 10M RMII Receive Diagram	3-16
Figure 3-9 100M RMII Transmit Diagram	3-16
Figure 3-10 10M RMII Transmit Diagram	3-17
Figure 3-11 SMII Signal Diagram	3-18
Figure 3-12 SS_SMII Signal Diagram	3-18
Figure 3-13 100M SMII Receive Timing Diagram	3-18
Figure 3-14 100M SS_SMII Receive Timing Diagram	
Figure 3-15 10M SMII Receive Timing Diagram	
Figure 3-16 10M SS_SMII Receive Timing Diagram	3-19
Figure 3-17 100M SMII Transmit Timing Diagram	3-20
Figure 3-18 100M SS_SMII Transmit Timing Diagram	
Figure 3-19 10M SMII Transmit Timing Diagram	
Figure 3-20 10M SS_SMII Transmit Timing Diagram	
Figure 3-21 Stream LED under RMII Mode	
Figure 3-22 Stream LED under SMII/SS_SMII Mode	
Figure 3-23 SMI Read Operation	
Figure 3-24 SMI Write Operation.	
Figure 3-25 Medium Detect Power Management Flow Chart.	
Figure 3-26 Low Power Link Pulse during TX for Power Management	
Figure 3-27 External PNP Power Transistor Diagram.	
Figure 5-1 Crystal/Oscillator Timing	
Figure 5-2 REFCLK Input Timing	
Figure 5-3 REFCLK Output Timing	
Figure 5-4 RMII Transmit Timing	5-5
Figure 5-5 RMII Receive Timing	
Figure 5-6 REFCLK Input Timing	
Figure 5-7 SMII/SS_SMII REFCLK Output Timing	
Figure 5-8 SMII/SS_SMII Transmit Timing	
Figure 5-9 SMII/SS_SMII Receive Timing	
Figure 5-10 Serial Management Interface (MDC/MDIO) Timing	
Figure 5-11 Power On Configuration Timing	5-12

ADM7008 iv

ADMtek Inc. V1.0

List of Tables

Table 3-1 Look-up Table for translating 5B Symbols into 4B Nibbles	3-5
Table 3-2 Channel Configuration	3-17
Table 3-3 Receive Data Encoding for SMII/SS_SMII mode	3-19
Table 3-4 Speed LED Display	3-21
Table 3-5 Duplex LED Display	3-22
Table 3-6 Activity/Link LED Display	3-22
Table 3-7 Different Blinking Time for Different Speed	3-22
Table 3-8 Cable Distance LED Display	3-22
Table 3-9 Speed LED Display	3-23
Table 3-10 Activity/Link LED Display	
Table 5-1 Electrical Absolute Maximum Rating	5-1
Table 5-2 Recommended Operating Conditions	5-1
Table 5-3 DC Electrical Characteristics for 3.3V Operation	5-1
Table 5-4 Crystal/Oscillator Timing	5-2
Table 5-5 REFCLK Input Timing	5-3
Table 5-6 REFCLK Output Timing	5-4
Table 5-7 RMII Transmit Timing	5-5
Table 5-8 RMII Receive Timing	5-6
Table 5-9 REFCLK Input Timing	5-7
Table 5-10 SMII/SS_SMII REFCLK Output Timing	
Table 5-11 SMII/SS_SMII Transmit Timing	5-9
Table 5-12 SMII/SS_SMII Receive Timing	5-10
Table 5-13 Serial Management Interface (MDC/MDIO) Timing	5-11
Table 5-14 Power On Configuration Timing	5-12

ADM7008 v

Chapter 1 Product Overview

1.1 Overview

The ADM7008 is a single chip eight port 10/100M PHY, which is designed for today's low cost and low power dual speed application.

It supports eight auto sensing 10/100 Mbps ports with on-chip clock recovery and base line wander correction including integrated MLT-3 functionality for 100 Mbps operation. It also supports Manchester Code Converter with on chip clock recovery circuitry for 10 Mbps functionality, provides Reduced MII (RMII), Serial MII (SMII) and Source Synchronous MII (SS_SMII) interface to facilitate high port count switch system application and reduce the pin number simultaneously.

For today's Information Application (IA), ADM7008 also supports "Auto Cross Over Detection" function to eliminate the technical barrier between networking and the end user. With the aid of this auto cross over detection function, Plug-n-Play features can be easily applied to IA relative products.

To make the user interface as friendly as possible, ADM7008 provides cable length information for CAT5 cable and also detects that the wire connection on the RJ-45 is broken or not. This function is specifically helpful in system debugging, especially for high port count approach system debugging.

The major design goal for ADM7008 is to reduce the power consumption and system radiation for the whole system. With the aid of this low power consumption and low radiation chip, fan and on-system power supply can be removed to save the total manufacture cost and make SOHO application achievable.

1.2 Features

• IEEE 802.3 compatible (2000 edition) 10BASE-T and 100BASE-T physical layer interface and ANSI X3.263 TP-PMD compatible transceiver.

- Eight-port, single chip, integrated physical layer and transceivers for 10BASE-T and 100BASE-TX function.
- Reduced MII (RMII), Serial MII (SMII) and Source Synchronous MII (SS_SMII) for high port count switch.
- Built-in 10Mbit transmit filter.
- 10 Mbit PLL, exceeding tolerances for both preamble and data jitter.
- 100Mbit PLL, combined with the digital adaptive equalizer and performance exceeds 140 meters for UTP 5.
- 125MHz Clock Generator and Timing Recovery.
- Integrated Base Line Wander Correction.
- Carrier Integrity Monitor function supported.
- Supports FEFI when Auto Negotiation is disabled.
- Supports Auto Cross Over Detection function for Plug-and-Play.
- IEEE 802.3u Clause 28 compliant auto negotiation for full 10 Mbps and 100 Mbps control.
- Supports programmable LED for different Switch Application and Power On LED Self Test.
- Supports Cable Length Indication both in MII Register and LED (Programmable).
- Supports Cable Broken Auto Detection function and indicate cable broken location.
- Supports PECL interface for fiber connection.
- Built-in 3.3V to 1.8V Regulator Control Signal.
- Built-in Clock Generator and Power On Reset Signal to save system cost.
- 128 PQFP with 1.8V/3.3V Power Supply.
- Support Power saving function.
- Support Parallel/Serial LED output.

1.3 Block Diagram

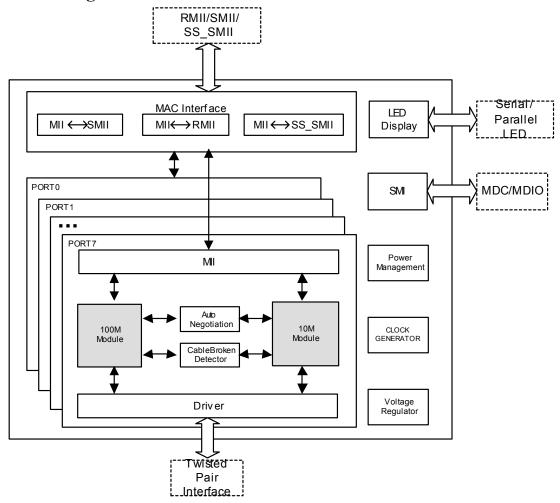


Figure 1-1 ADM7008 Block Diagram

1.4 Abbreviations

ANSI	American National Standards Institute
BER	Bit Error Rate
COL	Collision
CRS	Carrier Sense
CRSDV	Carrier Sense and Data Valid
CTL	Crystal
DSP	Digital Signal Processor
DUPCOL	Duplex and Collision
ESD	End of Stream Delimiter
FEFI	Far End Fault Indication

FIFO First In First Out FLP Fast Link Pulse

FX Fiber

IA Information Application

LFSR Linear Feedback Shifter Register

LLP Low-power Link Pulse LNKACT Link and Activity

LVTTL TTL Level

MAC Media Access Controller

MD Medium Detect

MDC Management Data Clock

MDIO Management Data Input/Output MII Media Independent Interface

NRZ None Return to Zero

NRZI None Return to Zero Inverter

OP Operation Code

PCS Physical Coding Sub-layer PECL Pseudo Emitter Couple Logic

PHY Physical Layer PHYADDR PHY Address

PMA Physical Medium Attachment PMD Physical Medium Dependent

PNP A type of Transistor
PQFP Plastic Quad Flat Pack
REFCLK Reference Clock

REFULK Reference Clo RF Remote Fault

RMII Reduced Media Independent Interface RSMODE RMII/SMII/SS_SMII Mode Select

RXC Receive Clock
RXD Receive Data
RXDV Receive Data Valid
RXER Receive Data Error

RXN Receive Negative (Analog receive differential signal)
RXP Receive Positive (Analog receive differential signal)

RX SYNC Receive Synchronous

SDN Signal Detect Negative (Fiber signal detect)
SDP Signal Detect Positive (Fiber signal detect)

SELFX Select Fiber

SMI Serial Management Interface
SMII Serial Media Independent Interface
SOHO Small Office and Home Office

SQE Signal Quality Error SSD Start of Stream Delimiter

SS SMII Source Synchronous Media Independent Interface

SYNC Synchronous TA Turn Around

TDR Time Domain Reflectometry

TP Twisted Pair

TP-PMD Twisted Pair Physical Medium Dependent

TTL Transistor Transistor Logic TXC Transmission Clock (MII)

TXCLK Transmission Clock (SMII/SS SMII)

TXD Transmission Data
TXEN Transmission Enable
TXER Transmission Error
TXN Transmission Negative
TXP Transmission Positive

/J/K 5B signal to detect the start of a frame /T/R 5B signal to detect the end of a frame

1.5 Conventions

1.5.1 Data Lengths

qword 64-bits dword 32-bits word 16-bits byte 8 bits nibble 4 bits

1.5.2 Register Type Descriptions

Register Type Description
RO Read Only

R/W Read and Write capable

SC Self-clearing

LL Latching low, unlatch on read LH Latching high, unlatch on read

COR Clear On Read

1.5.3 Pin Type Descriptions

Pin Type Description
I: Input
O: Output

I/O: Bi-directional
OD: Open drain
SCHE: Schmitt Trigger

PU: Pull Up PD: Pull Down

Chapter 2 Interface Description

2.1 Pin Diagram

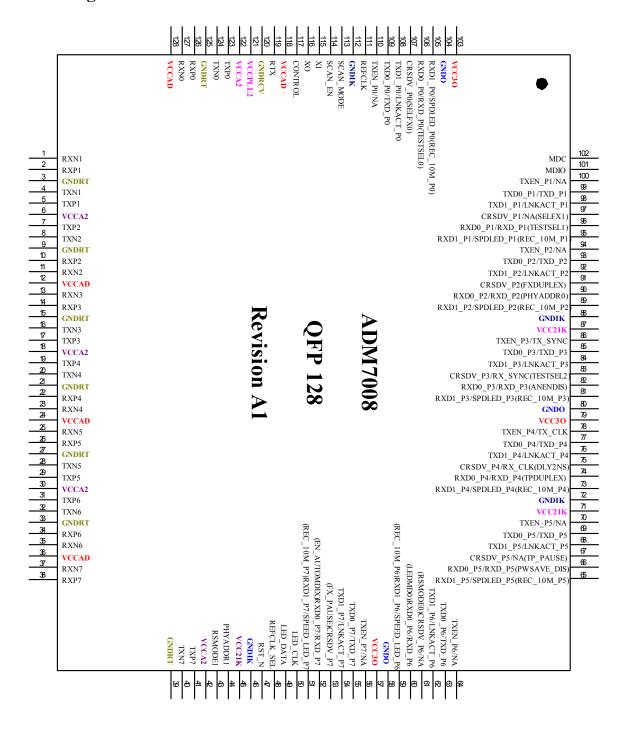


Figure 2-1 ADM7008 Pin Assignment

2.2 Pin Description

Note:

For those pins, which have multiple functions, pin name is separated by slash ("/").

If not specified, all signals are default to digital signals.

Please refer to section '1.5.3 Pin Type Descriptions' for an explanation of pin abbreviations.

2.2.1 Twisted Pair Interface, 32 pins

Pin #	Pin Name	Type	Description
123, 5, 7, 17	TXP[0:7]	Ο,	Twisted Pair Transmit Output Positive.
19, 29, 31, 41		Analog	
124, 4, 8, 16	TXN[0:7]	Ο,	Twisted Pair Transmit Output Negative.
20, 28, 32, 40		Analog	
126, 2, 10, 14	RXP[0:7]	I, Analog	Twisted Pair Receive Input Positive.
22, 26, 34, 38			·
127, 1, 11, 23	RXN[0:7]	I, Analog	Twisted Pair Receive Input Negative.
23, 25, 35, 37			

2.2.2 Ground and Power, 20 pins

Pin #	Pin Name	Type	Description
125, 3, 9, 15,	GNDRT	Analog	Analog Ground Pad
21, 27, 33, 39		Ground	
118, 128, 12,	VCCAD	Analog	Analog 3.3V Power
24, 36		Power	
122, 6, 18, 30,	VCCA2	Analog	Analog 1.8V Power
42		Power	
120	GNDRCV	Analog	Analog Ground used by Clock Generator module
		Ground	
121	VCCPLL2	Analog	Analog 1.8V Power used by Clock Generator module
		Power	

2.2.3 Mode Setting

Pin #	Pin Name	Type	Description
43	RSMODE1	I, PD	RMII and SMII/SS_SMII mode select signal. Dedicated input
			provided by ADM7008 to determine the interface:
			0: SMII or SS SMII interface (See CRSDV P6 power on setting
			for more detail)
			1: RMII interface

2.2.4 Clock Input Select

Pin #	Pin Name	Type	Description
48	REFCLK_SEL	I, PD	XI/XO and REFCLK clock select signal. Dedicated input provided by ADM7008 to determine the clock source for ADM7008. 0: ADM7008 will use XI/XO as clock source for internal clock generator. In this mode, REFCLK (pin 112) will output 50M clock in RMII mode (RSMODE1 is set to 1) and 125M clock in either SMII or SS_SMII mode (RSMODE1 is set to 0) \
			1: ADM7008 will use the input of REFCLK (pin 112) as the

Pin #	Pin Name	Type	Description
			clock source for internal clock generator.
			Note: that when RSMODE1 is set to 1 (RMII mode), the input
			of REFCLK should be 50M; when RSMODE1 is set to 0
			(SMII or SS SMII mode) the clock input on REFCLK
			should be 125M

2.2.5 Clock Input, 3 pins

Pin #	Pin Name	Type	Pin Description
115	XI/OSCI	I, CTL	Crystal/Oscillator input.
			REFCLK_SEL = 0: 25M Crystal/Oscillator Input.
			REFCLK_SEL = 1: Leave unconnected
116	XO	O, CTL	Crystal output. When 25M Oscillator is used, this pin should be
			left unconnected. See XI/OSCI description above.
111	REFCLK	I/O,	Reference clock. Function on this pin is highly depended upon
		16mA	the setting on REFCLK_SEL and RSMODE1:
		LVTTL	REFCLK_SEL RSMODE1 REFCLK (Direction/Frequency)
			0 0 Output/125 MHz
			0 1 Output/50 MHz
			1 0 Input/125 MHz with maximum 100ppm
			1 1 Input/50 MHz with maximum 100ppm

2.2.6 RMII/SMII Interface, 48 pins

Pin#	Pin Name	Type	Pin Description
51, 52	PIN Name Power On Setting REC_10M_P7, EN_AUTOMDIX RMII Mode RXD[1:0]_P7	I/O, 8mA, PD/PU	REC_10M: Value on RXD1_P7 will be latched by ADM7008 during power on reset as Port 7 10M Re-command value. 0: Recommend Port 7 to operate in 100M Mode 1: Recommend Port 7 to operate in 10M Mode Auto MDIX Enable signal: Value on RXD0_P7 will be latched by ADM7008 during power on reset as Auto MDIX function control signal. 0: Disable all ports' Auto MDIX function. 1: Enable all ports' Auto MDIX function. Port 7 RMII Receive Data. RXD[1:0] are the port 7 output dibits synchronously to REFCLK. Upon assertion of CRSDV_P, RXD0 and RXD1 remain at 00 until valid data is output from the FIFO onto RXD. 01 on RXD1 and RXD0 indicates the start of valid data. If a false carrier or a symbol error is detected, RXD1 and RXD0 are set to 10 for the duration of the activity. Note
	SMII/SS_SMII Mode SPDLED_P7, SMII_RXD_P7		that in 100Mb/s mode RXD can change once per REFCLK cycle, whereas in 10Mb/s mode RXD must be held steady for 10 consecutive REFCLK cycles. Port 7 SMII Receive Data. RXD0 for the designated port outputs data or in-band management information synchronously to SMII REFCLK (pin 70). In 100Mb/s mode, RXD0 outputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, RXD0 must repeat each 10 bits segment 10 times. RXD1 for the designated port is acted as Speed Status LED for port 7.

Pin #	Pin Name	Type	Pin Description
53	SS_SMII Mode SPDLED_P7, SSS_SMII_RXD _P7		Port 7 SS_SMII Receive Data. RXD0 for the designated port outputs data or in-band management information synchronously to RXCLK (pin 75). In 100Mb/s mode, RXD0 outputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, RXD0 must repeat each 10 bits segment 10 times. RXD1 for the designated port is acted as Speed Status LED for port 7. Fiber PAUSE Recommend Value. Value on this pin will be
	Setting FX_PAUSE	PD	latched by ADM7008 during power on reset as Fiber port (See SELFX power on setting for more detail) pause capability control signal. 0: Pause off for all fiber ports 1: Pause on for all fiber ports
	RMII Mode CRSDV_P7	O, 8mA	Port 7 Carrier Sense/Receive Data Valid. CRSDV_P7 asserts when the receive medium is non-idle. The assertion of CRSDV_P7 is asynchronous to REFCLK. At the de-assertion of carrier, CRSDV_P7 de-asserts synchronously to REFCLK only on the first di-bit of RXD. If there is still data in the FIFO not yet presented onto RXD, then on the second di-bit of RXD, CRSDV_P7 is asserted synchronously to REFCLK. The toggling of CRSDV_P7 on the first and second di-bit continues until all the data in the FIFO is presented onto RXD. CRSDV_P7 is asserted for the duration of carrier activity for a false carrier event.
	SMII/SS_SMII Mode N/A		Not used in SMII/SS_SMII Mode
54, 55	RMII Mode TXD[1:0]_P7	I, TTL, PD	Port 7 RMII Transmit Data. Transmit data for port 7 input the di-bits that re transmitted and are driven synchronously to REFCLK. **Note:* that in 100Mb/s mode, TXD can change once per REFCLK cycle, whereas in 10Mb/s mode, TXD must be held steady for 10 consecutive REFCLK cycles.
	SMII Mode LNKACT_P7, SMII_TXD_P7		Link and Activity LED/Port 7 SMII Transmit Data. TXD0 for port 7 inputs the data that is transmitted and is driven synchronously to SMII_REFCLK (pin 70). In 100Mb/s mode, TXD0 inputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, TXD0 must repeat each 10-bit segment 10 times. TXD1_P7 acts as Port 7 Link/Activity LED in both SMII and SS_SMII Mode. See LED Description for more detail.
	SMII Mode LNKACT_P7, SSSMII_TXD_P7		Link and Activity LED/Port 7 SS_SMII Transmit Data. TXD0 for port 7 inputs the data that is transmitted and is driven synchronously to TXCLK (pin 70). In 100Mb/s mode, TXD0 inputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, TXD0 must repeat each 10-bit segment 10 times.
56	RMII Mode TXEN_P7	I, TTL	Port 7 Transmit Enable. Transmit Enable for port 7 indicates that the di-bit on TXD is valid and it is driven synchronously to REFCLK.
	SMII/SS_SMII LOW		TIED TO LOW. TXEN_P7 should be tied to low for normal operation.

Pin#	Pin Name	Type	Pin Description
59, 60	Power On Setting REC_10M_P6, DUALLED	I PD, PD,	REC_10M: Value on RXD1_P6 will be latched by ADM7008 during power on reset as Port 6 10M Re-command value. 0: Recommend Port 6 to operate in 100M Mode 1: Recommend Port 6 to operate in 10M Mode
			Dual Color LED Mode. Value on RXD0_P6 will be latched by ADM7008 during power on reset to form LED control signal. Value on this pin will affect the output value on Serial LED output. 0: Single Color 3 bits/port serial stream (Default Value) 1: Dual Color 3 bits/port serial stream
	RMII Mode RXD[1:0]_P6	O, 8mA	Port 6 RMII Receive Data. RXD[1:0] are the port 6 output dibits synchronously to REFCLK. Upon assertion of CRSDV_P, RXD0 and RXD1 remain at 00 until valid data is output from the FIFO onto RXD. The start of valid data is indicated by 01 on RXD1 and RXD0. If a false carrier or a symbol error is detected, RXD1 and RXD0 are set to 10 for the duration of the activity. Note that in 100Mb/s mode RXD can change once per REFCLK cycle, whereas in 10Mb/s mode RXD must be held steady for 10 consecutive REFCLK cycles.
	SMII Mode SPDLED_P6, SMII_RXD_P6	O, 8mA	Port 6 SMII Receive Data. RXD0 for the designated port outputs data or in-band management information synchronously to SMII REFCLK (pin 70). In 100Mb/s mode, RXD0 outputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, RXD0 must repeat each 10 bits segment 10 times. RXD1 for the designated port is acted as Speed Status LED for port 6.
	SS_SMII Mode SPDLED_P6, SSSMII_RXD_P 6	O, 8mA	Port 6 SS_SMII Receive Data. RXD0 for the designated port outputs data or in-band management information synchronously to RXCLK (pin 75). In 100Mb/s mode, RXD0 outputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, RXD0 must repeat each 10 bits segment 10 times. RXD1 for the designated port is acted as Speed Status LED for port 6.
61	Power On Setting RSMODE0	I, LVTTL, PD	RMII/SMII/SS_SMII Configuration bit 0. Value on this pin will be latched by ADM7008 during power on reset as interface configuration bit 0. Combined with RSMODE1 (pin 43), three possible interfaces are provided by ADM7008 RSMODE[1:0] Interface 00 SMII 01 SS_SMII 1x RMII
	RMII Mode CRSDV_P6	O, 8mA	Port 6 Carrier Sense/Receive Data Valid. CRSDV_P6 asserts when the receive medium is non-idle. The assertion of CRSDV_P6 is asynchronous to REFCLK. At the de-assertion of carrier, CRSDV_P6 de-asserts synchronously to REFCLK only on the first di-bit of RXD. If there is still data in the FIFO not yet presented onto RXD, then on the second di-bit of RXD,

Pin#	Pin Name	Type	Pin Description
			CRSDV_P6 is asserted synchronously to REFCLK. The toggling of CRSDV_P6 on the first and second di-bit continues until all the data in the FIFO is presented onto RXD. CRSDV_P6 is asserted for the duration of carrier activity for a false carrier event.
	SMII/SS_SMII Mode N/A		Not Used. Not used in SMII/SS_SMII Mode
62, 63	RMII Mode TXD[1:0]_P6	I, LVTTL, PD, PD	Port 6 RMII Transmit Data. Transmit data for port 6 input the di-bits that re transmitted and are driven synchronously to REFCLK. Note that in 100Mb/s mode, TXD can change once per REFCLK cycle, whereas in 10Mb/s mode, TXD must be held steady for 10 consecutive REFCLK cycles.
	SMII Mode LNKACT_P6, SMII_TXD_P6		Link and Activity LED/Port 6 SMII Transmit Data. TXD0 for port 6 inputs the data that is transmitted and is driven synchronously to SMII_REFCLK (pin 70). In 100Mb/s mode, TXD0 inputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, TXD0 must repeat each 10-bit segment 10 times. TXD1_P6 acts as Port 6 Link/Activity LED in both SMII and SS_SMII Mode. See LED Description for more detail.
	SS_SMII Mode LNKACT_P6, SSSMII_TXD_P6		Link and Activity LED/Port 6 SS_SMII Transmit Data. TXD0 for port 6 inputs the data that is transmitted and is driven synchronously to TXCLK (pin 70). In 100Mb/s mode, TXD0 inputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, TXD0 must repeat each 10-bit segment 10 times.
64	RMII Mode TXEN_P6	I, TTL	Port 6 Transmit Enable. Transmit Enable for port 6 indicates that the di-bit on TXD is valid and it is driven synchronously to REFCLK.
	SMII/SS_SMII LOW		TIED TO LOW. TXEN_P6 should be tied to low for normal operation in both SMII and SS_SMII Mode.
65, 66	Power On Setting REC_10M_P5, PWSAVE_DIS	I, PD, PD	REC_10M: Value on RXD1_P5 will be latched by ADM7008 during power on reset as Port 5 10M Re-command value. 0: Recommend Port 5 to operate in 100M Mode (Default) 1: Recommend Port 5 to operate in 10M Mode
			Lower power Link Pulse Function (Power Saving, LLP) Disable. Value on RXD1 will be latched by ADM7008 during power on reset as power saving disable signal. (See Lower Power Link Pulse Function description for more detail) 0: Power Saving Enable 1: Power Saving disable (Default)
	RMII Mode RXD[1:0]_P5	O, 8mA	Port 5 RMII Receive Data. RXD[1:0] are the port 5 output dibits synchronously to REFCLK. Upon assertion of CRSDV_P, RXD0 and RXD1 remain at 00 until valid data is output from the FIFO onto RXD. 01 on RXD1 and RXD0 indicates the start of valid data. If a false carrier or a symbol error is detected, RXD1 and RXD0 are set to 10 for the duration of the activity. Note that in 100Mb/s mode RXD can change once per REFCLK

Pin #	Pin Name	Туре	Pin Description
			cycle, whereas in 10Mb/s mode RXD must be held steady for 10 consecutive REFCLK cycles.
	SMII Mode SPDLED_P5, SMII_RXD_P5		Port 5 SMII Receive Data. RXD0 for the designated port outputs data or in-band management information synchronously to SMII REFCLK (pin 70). In 100Mb/s mode, RXD0 outputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, RXD0 must repeat each 10 bits segment 10 times. RXD1 for the designated port is acted as Speed Status LED for port 5.
	SS_SMII Mode SPDLED_P5, SSSMII_RXD_P 5		Port 5 SS_SMII Receive Data. RXD0 for the designated port outputs data or in-band management information synchronously to RXCLK (pin 75). In 100Mb/s mode, RXD0 outputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, RXD0 must repeat each 10 bits segment 10 times. RXD1 for the designated port is acted as Speed Status LED for port 5.
67	Power On Setting TP_PAUSE	I, LVTTL, PU	Twisted Pair PAUSE Recommend Value. Value on this pin will be latched by ADM7008 during power on reset as twisted pair port (See SELFX power on setting for more detail) pause capability control signal. 0: Pause off for all twisted pair ports 1: Pause on for all twisted pair ports
	RMII Mode CRSDV_P5	O, 8mA	Port 5 Carrier Sense/Receive Data Valid. CRSDV_P5 asserts when the receive medium is non-idle. The assertion of CRSDV_P5 is asynchronous to REFCLK. At the de-assertion of carrier, CRSDV_P5 de-asserts synchronously to REFCLK only on the first di-bit of RXD. If there is still data in the FIFO not yet presented onto RXD, then on the second di-bit of RXD, CRSDV_P5 is asserted synchronously to REFCLK. The toggling of CRSDV_P5 on the first and second di-bit continues until all the data in the FIFO is presented onto RXD. CRSDV_P5 is asserted for the duration of carrier activity for a false carrier event.
	SMII/SS_SMII Mode N/A		Not Used. Not used in SMII/SS_SMII Mode
68, 69	RMII Mode TXD[1:0]_P5	I, TTL, PD	Port 5 RMII Transmit Data. Transmit data for port 5 inputs the di-bits that re transmitted and are driven synchronously to REFCLK. Note that in 100Mb/s mode, TXD can change once per REFCLK cycle, whereas in 10Mb/s mode, TXD must be held steady for 10 consecutive REFCLK cycles.
	SMII Mode LNKACT_P5, SMII_TXD_P5		Link and Activity LED/Port 5 SMII Transmit Data. TXD0 for port 5 inputs the data that is transmitted and is driven synchronously to SMII_REFCLK (pin 70). In 100Mb/s mode, TXD0 inputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, TXD0 must repeat each 10-bit segment 10 times. TXD1_P5 acts as Port 5 Link/Activity LED in both SMII and SS_SMII Mode. See LED Description for more detail.

Pin#	Pin Name	Туре	Pin Description
	SS_SMII Mode LNKACT_P5, SSSMII_TXD_P5		Link and Activity LED/Port 5 SS_SMII Transmit Data. TXD0 for port 5 inputs the data that is transmitted and is driven synchronously to TXCLK (pin 70). In 100Mb/s mode, TXD0 inputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, TXD0 must repeat each 10-bit segment 10 times.
70	RMII Mode TXEN_P5	I, TTL	Port 5 Transmit Enable. Transmit Enable for port 5 indicates that the di-bit on TXD is valid and it is driven synchronously to REFCLK.
	SMII/SS_SMII LOW		SMII/SS_SMII Mode. Keep LOW for normal operation.
73, 74	Power On Setting REC_10M_P4, TP_DUPLEX	I/O, 8mA, PD/PU	REC_10M: Value on RXD1_P4 will be latched by ADM7008 during power on reset as Port 4 10M Re-command value. 0: Recommend Port 4 to operate in 100M Mode 1: Recommend Port 4 to operate in 10M Mode
			Twisted Pair Duplex Recommend Value. Value on RXD1 will be latched by ADM7008 during power on reset as duplex recommend value for twisted pair interface. 0: Half Duplex for all twisted pair ports 1: Full Duplex for all twisted pair ports
	RMII Mode RXD[1:0]_P4		Port 4 RMII Receive Data. RXD[1:0] are the port 4 output dibits synchronously to REFCLK. Upon assertion of CRSDV_P, RXD0 and RXD1 remain at 00 until valid data is output from the FIFO onto RXD. 01 on RXD1 and RXD0 indicates the start of valid data. If a false carrier or a symbol error is detected, RXD1 and RXD0 are set to 10 for the duration of the activity. Note that in 100Mb/s mode RXD can change once per REFCLK cycle, whereas in 10Mb/s mode RXD must be held steady for 10 consecutive REFCLK cycles.
	SMII Mode SPDLED_P4, SMII_RXD_P4		Port 4 SMII Receive Data. RXD0 for the designated port outputs data or in-band management information synchronously to SMII REFCLK (pin 70). In 100Mb/s mode, RXD0 outputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, RXD0 must repeat each 10 bits segment 10 times. RXD1 for the designated port is acted as Speed Status LED for port 4.
	SS_SMII Mode SPDLED_P4, SSSMII_RXD_P 4		Port 4 SS_SMII Receive Data. RXD0 for the designated port outputs data or in-band management information synchronously to RXCLK (pin 75). In 100Mb/s mode, RXD0 outputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, RXD0 must repeat each 10 bits segment 10 times. RXD1 for the designated port is acted as Speed Status LED for port 4.
75	Power On Setting DLY2NS	I, LVTTL, PD	REFCLK Delay 2ns. Value on this pin will be latched by ADM7008 during power on reset as delay select signal for REFCLK input when REFCLK_SEL and RSMODE1 are both set to 1 (RMII interface with REFCLK as clock input)

Pin#	Pin Name	Type	Pin Description
			0: Normal REFCLK clock path
			1: REFCLK delay by 2 ns
	RMII Mode CRSDV_P4	O, 8mA	Port 4 Carrier Sense/Receive Data Valid. CRSDV_P4 asserts when the receive medium is non-idle. The assertion of CRSDV_P4 is asynchronous to REFCLK. At the de-assertion of carrier, CRSDV_P4 de-asserts synchronously to REFCLK only on the first di-bit of RXD. If there is still data in the FIFO not yet presented onto RXD, then on the second di-bit of RXD, CRSDV_P4 is asserted synchronously to REFCLK. The toggling of CRSDV_P4 on the first and second di-bit continues until all the data in the FIFO is presented onto RXD. CRSDV_P4 is asserted for the duration of carrier activity for a false carrier event.
	SMII Mode N/A		Not Used. Not used in SMII Mode
	SS_SMII Mode RXCLK		125M Receive Clock. This pin acts as 125M receive clock when ADM7008 is programmed to SS_SMII mode. All SSS_SMII_RXD are synchronous to the rising edge of this clock. Note: that clock on this pin will not be active during power on reset due to power on setting.
76, 77	RMII Mode TXD[1:0]_P4	I, TTL, PD	Port 4 RMII Transmit Data. Transmit data for port 4 inputs the di-bits that re transmitted and are driven synchronously to REFCLK. Note that in 100Mb/s mode, TXD can change once per REFCLK cycle, whereas in 10Mb/s mode, TXD must be held steady for 10 consecutive REFCLK cycles.
	SMII Mode LNKACT_P4, SMII_TXD_P4		Link and Activity LED/Port 4 SMII Transmit Data. TXD0 for port 4 inputs the data that is transmitted and is driven synchronously to SMII_REFCLK (pin 70). In 100Mb/s mode, TXD0 inputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, TXD0 must repeat each 10-bit segment 10 times. TXD1_P4 acts as Port 4 Link/Activity LED in both SMII and SS_SMII Mode. See LED Description for more detail.
	SS_SMII Mode LNKACT_P4, SSSMII_TXD_P4		Link and Activity LED/Port 4 SS_SMII Transmit Data. TXD0 for port 4 inputs the data that is transmitted and is driven synchronously to TXCLK (pin 70). In 100Mb/s mode, TXD0 inputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, TXD0 must repeat each 10-bit segment 10 times.
78	RMII Mode TXEN_P4	I, TTL	Port 4 Transmit Enable. Transmit Enable for port 4 indicates that the di-bit on TXD is valid and it is driven synchronously to REFCLK.
	SMII Mode SMII_REFCLK		SMII 125M Reference Clock. In SMII Mode, this pin acts as 125M reference clock for all ports. All transmit and receive data (include transmit enable and receive data valid) should be synchronous to the rising edge of this clock.

Pin #	Pin Name	Type	Pin Description
	SS_SMII Mode TXCLK		SS_SMII 125M Transmit Clock. In SS_SMII Mode, this pin acts as 125M transmit clock for all ports. TXD and TXEN should be synchronous to the rising edge of this clock.
81, 82	Power On Setting REC_10M_P3, ANENDIS	I/O, 8mA, PD	REC_10M: Value on RXD1_P3 will be latched by ADM7008 during power on reset as Port 3 10M Re-command value. 0: Recommend Port 3 to operate in 100M Mode 1: Recommend Port 3 to operate in 10M Mode
			Twisted Pair Duplex Recommend Value. Value on RXD1 will be latched by ADM7008 during power on reset as auto negotiation disable recommend value for twisted pair interface. 0: Auto-negotiation Enable for all twisted pair ports. 1: Auto-negotiation Disable for all twisted pair ports
	RMII Mode RXD[1:0]_P3		Port 3 RMII Receive Data. RXD[1:0] are the port 3 output dibits synchronously to REFCLK. Upon assertion of CRSDV_P, RXD0 and RXD1 remain at 00 until valid data is output from the FIFO onto RXD. The start of valid data is indicated by 01 on RXD1 and RXD0. If a false carrier or a symbol error is detected, RXD1 and RXD0 are set to 10 for the duration of the activity. Note that in 100Mb/s mode RXD can change once per REFCLK cycle, whereas in 10Mb/s mode RXD must be held steady for 10 consecutive REFCLK cycles.
	SMII Mode SPDLED_P3, SMII_RXD_P3		Port 3 SMII Receive Data. RXD0 for the designated port outputs data or in-band management information synchronously to SMII REFCLK (pin 70). In 100Mb/s mode, RXD0 outputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, RXD0 must repeat each 10 bits segment 10 times. RXD1 for the designated port is acted as Speed Status LED for port 3.
	SS_SMII Mode SPDLED_P3, SSSMII_RXD_P 3		Port 3 SS_SMII Receive Data. RXD0 for the designated port outputs data or in-band management information synchronously to RXCLK (pin 75). In 100Mb/s mode, RXD0 outputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, RXD0 must repeat each 10 bits segment 10 times. RXD1 for the designated port is acted as Speed Status LED for port 3.
83	Power On Setting TESTSEL2	I, PD	Industrial Test Mode Select 2. Value on this pin will be latched by ADM7008 during power on reset as industrial test mode select bit 2. Pull down for normal operation. For Test Mode, See test select 0 for more detail
	RMII Mode CRSDV_P3	O, 8mA	Port 3 Carrier Sense/Receive Data Valid. CRSDV_P3 asserts when the receive medium is non-idle. The assertion of CRSDV_P3 is asynchronous to REFCLK. At the de-assertion of carrier, CRSDV_P3 de-asserts synchronously to REFCLK only on the first di-bit of RXD. If there is still data in the FIFO not yet presented onto RXD, then on the second di-bit of RXD, CRSDV_P3 is asserted synchronously to REFCLK. The toggling of CRSDV_P3 on the first and second di-bit continues

Pin#	Pin Name	Type	Pin Description
			until all the data in the FIFO is presented onto RXD. CRSDV_P3 is asserted for the duration of carrier activity for a false carrier event.
	SMII Mode N/A		Not Used. Not used in SMII Mode
	SS_SMII Mode RX_SYNC		SS_SMII Receive Synchronization Signal. In SS_SMII Mode, this pin sets the bit stream alignment of SSS_SMII_RXD for all ports.
84, 85	RMII Mode TXD[1:0]_P3	I, TTL, PD	Port 3 RMII Transmit Data. Transmit data for port 3 inputs the di-bits that re transmitted and are driven synchronously to REFCLK. Note that in 100Mb/s mode, TXD can change once per REFCLK cycle, whereas in 10Mb/s mode, TXD must be held steady for 10 consecutive REFCLK cycles.
	SMII Mode LNKACT_P3, SMII_TXD_P3		Link and Activity LED/Port 3 SMII Transmit Data. TXD0 for port 3 inputs the data that is transmitted and is driven synchronously to SMII_REFCLK (pin 70). In 100Mb/s mode, TXD0 inputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, TXD0 must repeat each 10-bit segment 10 times. TXD1_P3 acts as Port 3 Link/Activity LED in both SMII and SS_SMII Mode. See LED Description for more detail.
	SS_SMII Mode LNKACT_P3, SSSMII_TXD_P3		Link and Activity LED/Port 3 SS_SMII Transmit Data. TXD0 for port 3 inputs the data that is transmitted and is driven synchronously to TXCLK (pin 70). In 100Mb/s mode, TXD0 inputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, TXD0 must repeat each 10-bit segment 10 times.
86	RMII Mode TXEN_P3	I, TTL	Port 3 Transmit Enable. Transmit Enable for port 3 indicates that the di-bit on TXD is valid and it is driven synchronously to REFCLK.
	SMII Mode SMII_SYNC		SMII Synchronization Signal. In SMII Mode, this pin sets the bit stream alignment of SMII_TXD and SMII_RXD for all ports.
	SS_SMII Mode TX_SYNC		SS_SMII Transmit Synchronization Signal. In SS_SMII Mode, this pin sets the bit stream alignment of SSS_SMII_TXD for all ports.
89, 90	Power On Setting REC_10M_P2, PHYADDR0	I, PD, PD	REC_10M: Value on RXD1_P2 will be latched by ADM7008 during power on reset as Port 2 10M Re-command value. 0: Recommend Port 2 to operate in 100M Mode (100M) 1: Recommend Port 2 to operate in 10M Mode
			PHY Address Bit 0. Value on RXD1 will be latched by ADM7008 during power on reset as PHY address bit 0. Combined with PHYADDR1 (pin 44) to form PHY address for ADM7008. See PHYADDR1 description for more detail
	RMII Mode RXD[1:0]_P2	O, 8mA	Port 2 RMII Receive Data. RXD[1:0] are the port 2 output dibits synchronously to REFCLK. Upon assertion of CRSDV_P, RXD0 and RXD1 remain at 00 until valid data is output from the

Pin#	Pin Name	Type	Pin Description
			FIFO onto RXD. The start of valid data is indicated by 01 on RXD1 and RXD0. If a false carrier or a symbol error is detected, RXD1 and RXD0 are set to 10 for the duration of the activity. Note that in 100Mb/s mode RXD can change once per REFCLK cycle, whereas in 10Mb/s mode RXD must be held steady for 10 consecutive REFCLK cycles.
	SMII Mode SPDLED_P2, SMII_RXD_P2		Port 2 SMII Receive Data. RXD0 for the designated port outputs data or in-band management information synchronously to SMII REFCLK (pin 70). In 100Mb/s mode, RXD0 outputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, RXD0 must repeat each 10 bits segment 10 times. RXD1 for the designated port is acted as Speed Status LED for port 2.
	SS_SMII Mode SPDLED_P2, SSSMII_RXD_P 2		Port 2 SS_SMII Receive Data. RXD0 for the designated port outputs data or in-band management information synchronously to RXCLK (pin 75). In 100Mb/s mode, RXD0 outputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, RXD0 must repeat each 10 bits segment 10 times. RXD1 for the designated port is acted as Speed Status LED for port 2.
91	Power On Setting FX_DUPLEX	I/O, 8mA PU	Duplex Recommend Value for Fiber Port. Value on this pin will be latched by ADM7008 during power on reset as duplex recommend value for all fiber ports. 0: Half duplex for all fiber ports. 1: Full duplex for all fiber ports.
	RMII Mode CRSDV_P2		Port 2 Carrier Sense/Receive Data Valid. CRSDV_P2 asserts when the receive medium is non-idle. The assertion of CRSDV_P2 is asynchronous to REFCLK. At the de-assertion of carrier, CRSDV_P2 de-asserts synchronously to REFCLK only on the first di-bit of RXD. If there is still data in the FIFO not yet presented onto RXD, then on the second di-bit of RXD, CRSDV_P2 is asserted synchronously to REFCLK. The toggling of CRSDV_P2 on the first and second di-bit continues until all the data in the FIFO is presented onto RXD. CRSDV_P2 is asserted for the duration of carrier activity for a false carrier event.
	SMII/SS_SMII Mode N/A		Not Used. Not used in SMII and SS_SMII Mode
92, 93	RMII Mode TXD[1:0]_P2	I, TTL, PD	Port 2 RMII Transmit Data. Transmit data for port 2 inputs the di-bits that re transmitted and are driven synchronously to REFCLK. Note that in 100Mb/s mode, TXD can change once per REFCLK cycle, whereas in 10Mb/s mode, TXD must be held steady for 10 consecutive REFCLK cycles.
	SMII Mode LNKACT_P2, SMII_TXD_P2		Link and Activity LED/Port 2 SMII Transmit Data. TXD0 for port 2 inputs the data that is transmitted and is driven synchronously to SMII_REFCLK (pin 70). In 100Mb/s mode, TXD0 inputs a

Pin#	Pin Name	Type	Pin Description
			new 10-bit segment starting with SYNC. In 10Mb/s mode, TXD0 must repeat each 10-bit segment 10 times. TXD1_P2 acts as Port 2 Link/Activity LED in both SMII and SS_SMII Mode. See LED Description for more detail.
	SS_SMII Mode LNKACT_P2, SSSMII_TXD_P2		Link and Activity LED/Port 2 SS_SMII Transmit Data. TXD0 for port 2 inputs the data that is transmitted and is driven synchronously to TXCLK (pin 70). In 100Mb/s mode, TXD0 inputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, TXD0 must repeat each 10-bit segment 10 times.
94	RMII Mode TXEN_P2	I, TTL	Port 2 Transmit Enable. Transmit Enable for port 2 indicates that the di-bit on TXD is valid and it is driven synchronously to REFCLK.
	SMII/SS_SMII LOW		Not Used. Tied to LOW for normal operation in SMII/SS_SMII mode.
95, 96	Power On Setting REC_10M_P1, TESTSEL1	I/O, 8mA, PD	REC_10M: Value on RXD1_P1 will be latched by ADM7008 during power on reset as Port 1 10M Re-command value. 0: Recommend Port 1 to operate in 100M Mode 1: Recommend Port 1 to operate in 10M Mode
			Industrial Test Mode Select 1. Value on RXD0_P1 will be latched by ADM7008 during power on reset as industrial test mode select bit 1. Pull down for normal operation. For Test Mode, See test select 0 for more detail
	RMII Mode RXD[1:0]_P1		Port 1 RMII Receive Data. RXD[1:0] are the port 1 output dibits synchronously to REFCLK. Upon assertion of CRSDV_P, RXD0 and RXD1 remain at 00 until valid data is output from the FIFO onto RXD. The start of valid data is indicated by 01 on RXD1 and RXD0. If a false carrier or a symbol error is detected, RXD1 and RXD0 are set to 10 for the duration of the activity. Note that in 100Mb/s mode RXD can change once per REFCLK cycle, whereas in 10Mb/s mode RXD must be held steady for 10 consecutive REFCLK cycles.
	SMII Mode SPDLED_P1, SMII_RXD_P1		Port 1 SMII Receive Data. RXD0 for the designated port outputs data or in-band management information synchronously to SMII REFCLK (pin 70). In 100Mb/s mode, RXD0 outputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, RXD0 must repeat each 10 bits segment 10 times. RXD1 for the designated port is acted as Speed Status LED for port 1.
	SS_SMII Mode SPDLED_P1, SSSMII_RXD_P 1		Port 1 SS_SMII Receive Data. RXD0 for the designated port outputs data or in-band management information synchronously to RXCLK (pin 75). In 100Mb/s mode, RXD0 outputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, RXD0 must repeat each 10 bits segment 10 times. RXD1 for the designated port is acted as Speed Status LED for port 1.
97	Power On	I/O,	Fiber/Twisted Pair Configuration bit 1. Value on RXD1 will be

Pin#	Pin Name	Type	Pin Description
	Setting SELFX1	8mA PD	latched by ADM7008 during power on reset as fiber/twisted pair interface configuration bit 1. Combined with SELFX0 (Power On setting value on RXD0_P0) to program ADM7008 into 4 different modes. 00: all ports are twisted ports 01: only port 7 is fiber port, and all the other ports are twisted ports. 10: only port 7 and port 6 are fiber ports, and all the other port are twisted port. 11: all ports are fiber ports.
	RMII Mode CRSDV_P1		Port 1 Carrier Sense/Receive Data Valid. CRSDV_P1 asserts when the receive medium is non-idle. The assertion of CRSDV_P1 is asynchronous to REFCLK. At the de-assertion of carrier, CRSDV_P1 de-asserts synchronously to REFCLK only on the first di-bit of RXD. If there is still data in the FIFO not yet presented onto RXD, then on the second di-bit of RXD, CRSDV_P1 is asserted synchronously to REFCLK. The toggling of CRSDV_P1 on the first and second di-bit continues until all the data in the FIFO is presented onto RXD. CRSDV_P1 is asserted for the duration of carrier activity for a false carrier event.
	SMII/SS_SMII Mode N/A		Not Used. Not used in SMII and SS_SMII Mode
98, 99	RMII Mode TXD[1:0]_P1	I, TTL, PD	Port 1 RMII Transmit Data. Transmit data for port 1 inputs the di-bits that re transmitted and are driven synchronously to REFCLK. Note that in 100Mb/s mode, TXD can change once per REFCLK cycle, whereas in 10Mb/s mode, TXD must be held steady for 10 consecutive REFCLK cycles.
	SMII Mode LNKACT_P1, SMII_TXD_P1		Link and Activity LED/Port 1 SMII Transmit Data. TXD0 for port 1 inputs the data that is transmitted and is driven synchronously to SMII_REFCLK (pin 70). In 100Mb/s mode, TXD0 inputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, TXD0 must repeat each 10-bit segment 10 times. TXD1_P1 acts as Port 1 Link/Activity LED in both SMII and SS_SMII Mode. See LED Description for more detail.
	SS_SMII Mode LNKACT_P1, SSSMII_TXD_P1		Link and Activity LED/Port 1 SS_SMII Transmit Data. TXD0 for port 1 inputs the data that is transmitted and is driven synchronously to TXCLK (pin 70). In 100Mb/s mode, TXD0 inputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, TXD0 must repeat each 10-bit segment 10 times.
100	RMII Mode TXEN_P1	I, TTL	Port 1 Transmit Enable. Transmit Enable for port 1 indicates that the di-bit on TXD is valid and it is driven synchronously to REFCLK.
	SMII/SS_SMII LOW		Not Used. Tied to LOW for normal operation in SMII/SS_SMII mode.

Pin#	Pin Name	Type	Pin Description
105, 106	Power On Setting REC_10M_P0, TESTSEL0	I/O, 8mA, PD	REC_10M: Value on RXD1_P0 will be latched by ADM7008 during power on reset as Port 0 10M Re-command value. 0: Recommend Port 0 to operate in 100M Mode 1: Recommend Port 0 to operate in 10M Mode
			Industrial Test Mode Select 0. Value on RXD0_P1 will be latched by ADM7008 during power on reset as industrial test mode select bit 0. Pull down TESTSEL[2:0] for normal operation. TESTSEL Mode 000: Normal Mode
	RMII Mode RXD[1:0]_P0		Port 0 RMII Receive Data. RXD[1:0] are the port 0 output dibits synchronously to REFCLK. Upon assertion of CRSDV_P, RXD0 and RXD1 remain at 00 until valid data is output from the FIFO onto RXD. The start of valid data is indicated by 01 on RXD1 and RXD0. If a false carrier or a symbol error is detected, RXD1 and RXD0 are set to 10 for the duration of the activity. Note that in 100Mb/s mode RXD can change once per REFCLK cycle, whereas in 10Mb/s mode RXD must be held steady for 10 consecutive REFCLK cycles.
	SMII Mode SPDLED_P0, SMII_RXD_P0		Port 0 SMII Receive Data. RXD0 for the designated port outputs data or in-band management information synchronously to SMII REFCLK (pin 70). In 100Mb/s mode, RXD0 outputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, RXD0 must repeat each 10 bits segment 10 times. RXD1 for the designated port is acted as Speed Status LED for port 0.
	SS_SMII Mode SPDLED_P0, SSSMII_RXD_P 0		Port 0 SS_SMII Receive Data. RXD0 for the designated port outputs data or in-band management information synchronously to RXCLK (pin 75). In 100Mb/s mode, RXD0 outputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, RXD0 must repeat each 10 bits segment 10 times. RXD1 for the designated port is acted as Speed Status LED for port 0.
107	Power On Setting SELFX0	I/O, 8mA PD	Fiber/Twisted Pair Configuration bit 0. Value on RXD1 will be latched by ADM7008 during power on reset as fiber/twisted pair interface configuration bit 1. Combined with SELFX1 (Power On setting value on RXD0_P1) to program ADM7008 into 4 different modes. See SELFX1 for more detail
	RMII Mode CRSDV_P0		Port 0 Carrier Sense/Receive Data Valid. CRSDV_P0 asserts when the receive medium is non-idle. The assertion of CRSDV_P0 is asynchronous to REFCLK. At the de-assertion of carrier, CRSDV_P0 de-asserts synchronously to REFCLK only on the first di-bit of RXD. If there is still data in the FIFO not yet presented onto RXD, then on the second di-bit of RXD, CRSDV_P0 is asserted synchronously to REFCLK. The toggling of CRSDV_P0 on the first and second di-bit continues until all the data in the FIFO is presented onto RXD.

Pin#	Pin Name	Type	Pin Description
			CRSDV_P0 is asserted for the duration of carrier activity for a
			false carrier event.
	SMII/SS_SMII Mode N/A		Not Used. Not used in SMII and SS_SMII Mode
108, 109	RMII Mode TXD[1:0]_P0	I, TTL, PD	Port 0 RMII Transmit Data. Transmit data for port 1 inputs the di-bits that re transmitted and are driven synchronously to REFCLK. Note that in 100Mb/s mode, TXD can change once per REFCLK cycle, whereas in 10Mb/s mode, TXD must be held steady for 10 consecutive REFCLK cycles.
	SMII Mode LNKACT_P0, SMII_TXD_P0		Link and Activity LED/Port 0 SMII Transmit Data. TXD0 for port 0 inputs the data that is transmitted and is driven synchronously to SMII_REFCLK (pin 70). In 100Mb/s mode, TXD0 inputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, TXD0 must repeat each 10-bit segment 10 times. TXD1_P0 acts as Port 0 Link/Activity LED in both SMII and SS_SMII Mode. See LED Description for more detail.
	SS_SMII Mode LNKACT_P0, SSSMII_TXD_P0		Link and Activity LED/Port 0 SS_SMII Transmit Data. TXD0 for port 1 inputs the data that is transmitted and is driven synchronously to TXCLK (pin 70). In 100Mb/s mode, TXD0 inputs a new 10-bit segment starting with SYNC. In 10Mb/s mode, TXD0 must repeat each 10-bit segment 10 times.
110	RMII Mode TXEN_P0	I, TTL	Port 0 Transmit Enable. Transmit Enable for port 0 indicates that the di-bit on TXD is valid and it is driven synchronously to REFCLK.
	SMII/SS_SMII LOW		Not Used. Tied to LOW for normal operation in SMII/SS_SMII mode.

2.2.7 ATPG Signals, 2 pins

Pin #	Pin Name	Type	Description
114	SCAN_EN	I	SCAN_EN: Scan enable for test 0: Normal mode
	_	VLTTL	
113	SCAN_MODE	1	SCAN_MODE: Scan mode select for test 0: Normal mode
	_	VLTTL	

2.2.8 Reset Pin

Pin#	Pin Name	Type	Description
47	RESET#	I,	Reset Signal. Active low to bring ADM7008 into reset
		SCHE	condition. Recommend keeping low for at least 200 ms to
			ensure the stability of the system after power on reset.

2.2.9 Control Signals, 3 pins

Ĺ	Pin#	Pin Name	Type	Pin Description
	101	MDIO	I/O, Management Data. MDIO transfers management data in and	
			LVTTL	out of the device synchronous to MDC.
	102	MDC	I,	Management Data Reference Clock. A non-continuous clock
			LVTTL	input for management usage. ADM7008 will use this clock to
				sample data input on MDIO and drive data onto MDIO

			according to rising edge of this clock.	
44	PHYADDR1	I,	PHY Address Bit 1. Pure input of ADM7008. Combined with	
		LVTTL	PHYADDR0 to form the Most Significant 2 bits of PHY address	
			for ADM7008. The LSB 3 bits will be assigned by ADM7008	
			automatically according to port number	
			000 Port 0	
			001 Port 1	
			010 Port 2	
			011 Port 3	
			100 Port 4	
			101 Port 5	
			110 Port 6	
			111 Port 7	

2.2.10 LED Interface, 2 pins

Pin #	Pin Name	Туре	Description
50	LED_CLK	I/O, 4mA, PD	LED Clock. Non-Continuous Clock for Serial Output LED status. The clock high duration is 40 ns and low for 600ns. This 640 ns period forms one clock cycle and 24 clocks form one LED burst. The first clock output is used to latch the first bit on LED_DATA (See LED_DATA for more detail) and the final clock is used to latch the last data on LED_DATA. LED_CLK will be kept low for 40 ms before next LED stream data is output.
49	LED_DATA	I/O, 4mA, PD	LED Data. 8 port Status Output with difference sequence according to different interface. DATA_LED is driven out by ADM7008 at the falling edge of CLK_LED. System design should use the rising edge of LED_CLK to latch the data on LED_DATA. The output sequence is: DUPCOL0 (First Bit Output) → DUPCOL1 → → DUPCOL7 → SPEED0 → SPEED1 → → SPEED7 → LNKACT0 → LNKACT1 → → LNKACT7 (Last Bit Output)

2.2.11 Regulator Control, 2 pins

Pin #	Pin Name	Type	Description
117	CONTROL	Ο,	Regulator Control.
		Analog	Voltage Control to external 1.8V Regulator. See 4.2.9 for more
			function description.
119	RTX	I,	Constant Voltage Reference.
		Analog	External 1.1kΩ1% resistor connection to ground.

2.2.12 Digital Power/Ground, 13 pins

Pin #	Pin Name	Type	Pin Description
58, 80	GNDO	Digital	Ground used by 3.3V I/O.
104		Ground	
46, 72,	GNDIK	Digital	Ground used by Core.
88, 112		Ground	
57, 79	VCC3O	Digital	3.3V Power used by I/O

103		Power	
45, 71,	VCC2IK	Digital	1.8V Power used by Core
87		Power	

Chapter 3 Function Description

ADM7008 integrates eight 100Base-X physical sublayer (PHY), 100Base-TX physical medium dependent (PMD) transceivers, eight complete 10Base-T modules into a single chip for both 10 Mbits/s and 100 Mbits/s Ethernet operation. It also supports 100Base-FX operation through external fiber-optic transceivers. The device is capable of operating in either full-duplex mode or half-duplex mode in either 10 Mbits/s or 100 Mbits/s operation. Operational modes can be selected by hardware configuration pins, software settings of management registers, or determined by the on-chip auto negotiation logic.

The 10Base-T section of the device consists of the 10 Mbits/s transceiver module with filters and a Manchester ENDEC module.

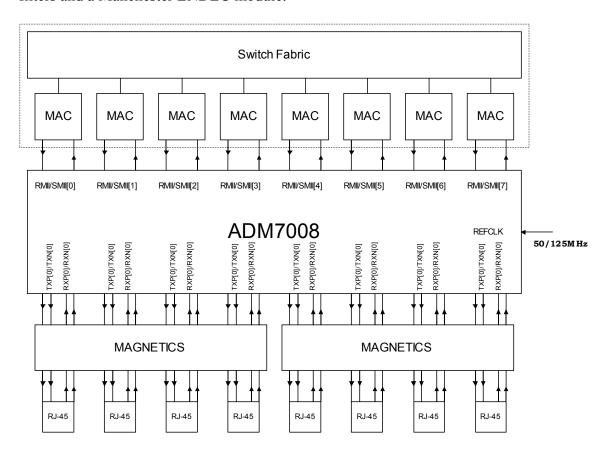


Figure 3-1 ADM7008 Switch Application (10/100M TP Mode)

ADM7008 consists of eight kinds of major blocks:

- Eight 10/100M PHY Blocks
- MAC Interface
- LED Display
- SMI

- Power Management
- Clock Generator
- Voltage Regulator

Each 10/100M PHY block contains:

- 10M PHY block
- 100M PHY block
- Auto-negotiation
- Cable Broken Detector
- Other Digital Control Blocks

3.1 10/100M PHY Block

The 100Base-X section of the device implements he following functional blocks:

- 100Base-X physical coding sub-layer (PCS)
- 100Base-X physical medium attachment (PMA)
- Twisted-pair PMD (TP-PMD) transceiver

The 100Base-X and 10Base-T sections share the following functional blocks:

- Clock synthesizer module
- MII Registers
- IEEE 802.3u auto negotiation

The interfaces used for communication between PHY block and switch core is MII interface.

3.1.1 100Base-X Module

ADM7008 implements 100Base-X compliant PCS and PMA and 100Base-TX compliant TP-PMD as illustrated in Figure 4. Bypass options for each of the major functional blocks within the 100Base-X PCS provides flexibility for various applications. 100 Mbps PHY loop back is included for diagnostic purpose.

3.1.2 100Base-TX Receiver

For 100Base-TX operation, the on-chip twisted pair receiver that consists of a differential line receiver, an adaptive equalizer and a base-line wander compensation circuits detects the incoming signal.

ADM7008 uses an adaptive equalizer that changes filter frequency response in accordance with cable length. The cable length is estimated based on the incoming signal strength. The equalizer tunes itself automatically for any cable length to compensate for the amplitude and phase distortions incurred from the cable.

The 100Base-X receiver consists of functional blocks required to recover and condition the 125 Mbps receive data stream. The ADM7008 implements the 100Base-X receiving state machine diagram as given in ANSI/IEEE Standard 802.3u, Clause 24. The 125 Mbps receive data stream may originate from the on-chip twisted-pair transceiver in a

100Base-TX application. Alternatively, the receive data stream may be generated by an external optical receiver as in a 100Base-FX application.

The receiver block consists of the following functional sub-blocks:

- A/D Converter
- Adaptive Equalizer and Timing Recovery Module
- NRZI/NRZ and Serial/Parallel Decoder
- Descrambler
- Symbol Alignment Block
- Symbol Decoder
- Collision Detect Block
- Carrier Sense Block
- Stream Decoder Block

A/D Converter

High performance A/D converter with 125M sampling rate converts signals received on RXP/RXN pins to 6 bits data streams; besides it possess auto-gain-control capability that will further improve receive performance especially under long cable or harsh detrimental signal integrity. Due to high pass characteristic on transformer, built in base-line-wander correcting circuit will cancel it out and restore its DC level.

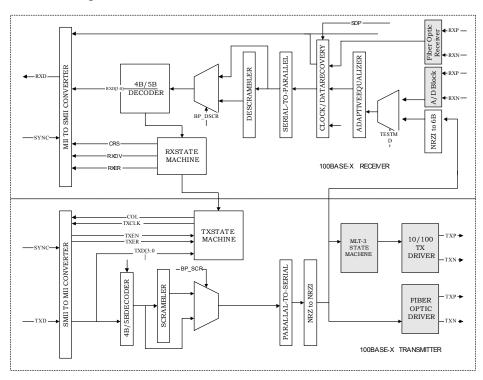


Figure 3-2 100Base-X Block Diagram and Data Path

Adaptive Equalizer and timing Recovery Module

All digital design is especial immune from noise environments and achieves better

correlations between production and system testing. Baud rate Adaptive Equalizer/Timing Recovery compensates line loss induced from twisted pair and tracks far end clock at 125M samples per second. Adaptive Equalizer implemented with Feed forward and Decision Feedback techniques meet the requirement of BER less than 10-12 for transmission on CAT5 twisted pair cable ranging from 0 to 140 meters.

NRZI/NRZ and Serial/Parallel Decoder

The recovered data is converted from NRZI to NRZ. The data is not necessarily aligned to 4B/5B code group's boundary.

Data Descrambling

The descrambler acquires synchronization with the data stream by recognizing idle bursts of 40 or more bits and locking its deciphering Linear Feedback Shift Register (LFSR) to the state of the scrambling LFSR. Upon achieving synchronization, the incoming data is XORed by the deciphering LFSR and descrambled.

In order to maintain synchronization, the descrambler continuously monitors the validity of the unscrambled data that it generates. To ensure this, a link state monitor and a hold timer are used to constantly monitor the synchronization status. Upon synchronization of the descrambler the hold timer starts a 722 us countdown. Upon detection of at least 6 idle symbols (30 consecutive "1") within the 722 us period, the hold timer will reset and begin a new countdown. This monitoring operation will continue indefinitely given a properly operating network connection with good signal integrity. If the link state monitor does not recognize at least 6 unscrambled idle symbols within 722 us period, the descrambler will be forced out of the current state of synchronization and reset in order to re-acquire synchronization.

Symbol Alignment

The symbol alignment circuit in the ADM7008 determines code word alignment by recognizing the /J/K delimiter pair. This circuit operates on unaligned data from the descrambler. Once the /J/K symbol pair (11000 10001) is detected, subsequent data is aligned on a fixed boundary.

Symbol Decoding

The symbol decoder functions as a look-up table that translates incoming 5B symbols into 4B nibbles as shown in Table 3-1. The symbol decoder first detects the /J/K symbol pair preceded by idle symbols and replaces the symbol with MAC preamble. All subsequent 5B symbols are converted to the corresponding 4B nibbles for the duration of the entire packet. This conversion ceases upon the detection of the /T/R symbol pair denoting the end of stream delimiter (ESD). The translated data is presented on the internal RXD[3:0] signal lines with RXD[0] represents the least significant bit of the translated nibble.

PCS code-group [4:0]	Name	MII (TXD/RXD) <3:0>	Interpretation
11110	0	0000	Data 0
01001	1	0001	Data 1
10100	2	0010	Data 2
10101	3	0011	Data 3
01010	4	0100	Data 4
01011	5	0101	Data 5
01110	6	0110	Data 6
01111	7	0111	Data 7
10010	8	1000	Data 8
10011	9	1001	Data 9
10110	A	1010	Data A
10111	В	1011	Data B
11010	C	1100	Data C
11011	D	1101	Data D
11100	Е	1110	Data E
11101	F	1111	Data F
11111	I	Undefined	IDLE
			used as inter-stream fill code
11000	J	0101	Start-of-Stream Delimiter, Part 1 of 2; always used in pairs with K
10001	K	0101	Start-of-Stream Delimiter, Part 2 of 2; always used in pairs with J
01101	Т	Undefined	Start-of-Stream Delimiter, Part 1 of 2; always used in pairs with R
0111	R	Undefined	Start-of-Stream Delimiter, Part 2 of 2; always used in pairs with T
00100	Н	Undefined	Transmit Error; used to force signaling errors
00000	V	Undefined	Invalid code
00001	V	Undefined	Invalid code
00010	V	Undefined	Invalid code
00011	V	Undefined	Invalid code
00101	V	Undefined	Invalid code
00110	V	Undefined	Invalid code
01000	V	Undefined	Invalid code
01100	V	Undefined	Invalid code
10000	V	Undefined	Invalid code
11001	V	Undefined	Invalid code
	l l a als		5B Symbols into 4B Nibbles.

Table 3-1 Look-up Table for translating 5B Symbols into 4B Nibbles.

Valid Data Signal

The valid data signal (RXDV) indicates that recovered and decoded nibbles are being presented on the internal RXD[3:0] synchronous to receive clock, RXCLK. RXDV is asserted when the first nibble of translated /J/K is ready for transfer over the internal MII. It remains active until either the /T/R delimiter is recognized, link test indicates failure, or no signal is detected. On any of these conditions, RXDV is deasserted.

Receive Errors

The RXER signal is used to communicate receiver error conditions. While the receiver is in a state of holding RXDV asserted, the RXER will be asserted for each code word that does not map to a valid code-group.

100Base-X Link Monitor

The 100Base-X link monitor function allows the receiver to ensure that reliable data is being received. Without reliable data reception, the link monitor will halt both transmit and receive operations until such time that a valid link is detected.

The ADM7008 performs the link integrity test as outlined in IEEE 100Base-X (Clause 24) link monitor state diagram. The link status is multiplexed with 10 Mbits/s link status to form the reportable link status bit in serial management register 1h, and driven to the LNKACT pin.

When persistent signal energy is detected on the network, the logic moves into a Link-Ready state after approximately 500 us, and waits for an enable from the auto negotiation module. When receive, the link-up state is entered, and the transmission and reception logic blocks become active. Should auto negotiation be disabled, the link integrity logic moves immediately to the link-up state after entering the link-ready state.

Carrier Sense

Carrier sense (CRS) for 100 Mbits/s operation is asserted upon the detection of two noncontiguous zeros occurring within any 10-bit boundary of the received data stream.

The carrier sense function is independent of symbol alignment. In switch mode, CRS is asserted during either packet transmission or reception. For repeater mode, CRS is asserted only during packet reception. When the idle symbol pair is detected in the received data stream, CRS is deasserted. In repeater mode, CRS is only asserted due to receive activity. CRS is intended to encapsulate RXDV.

Bad SSD Detection

A bad start of stream delimiter (Bad SSD) is an error condition that occurs in the 100Base-X receiver if carrier is detected (CRS asserted) and a valid /J/K set of codegroup (SSD) is not received.

If this condition is detected, then the ADM7008 will assert RXER and present RXD[3:0] = 1110 to the internal MII for the cycles hat correspond to received 5B code-groups until

at least two idle code-groups are detected. Once at least two idle code groups are detected, RXER and CRS become deasserted.

Far-End Fault

Auto negotiation provides a mechanism for transferring information from the Local Station to the link Partner that a remote fault has occurred for 100Base-TX. As auto negotiation is not currently specified for operation over fiber, the far end fault indication function (FEFI) provides this capability for 100Base-FX applications.

A remote fault is an error in the link that one station can detect while the other cannot. An example of this is a disconnected wire at a station's transmitter. This station will be receiving valid data and detect that the link is good via the link integrity monitor, but will not be able to detect that its transmission is not propagating to the other station.

A 100Base-FX station that detects such a remote fault may modify its transmitted idle stream from all ones to a group of 84 ones followed by a single 0. This is referred to as the FEFI idle pattern.

The FEFI function is controlled by bit 3 of register 11h. It is initialized to 1 (encoded) if the SELFX pin is at logic high level during power on reset. If the FEFI function is enabled the ADM7008 will halt all current operations and transmit the FEFI idle pattern when FOSD signal is de-asserted following a good link indication from the link integrity monitor. FOSD signal is generated internally from the internal signal detect circuit. Transmission of the FEFI idle pattern will continue until link up signal is asserted. If three or more FEFI idle patterns are detected by the ADM7008, then bit 4 of the Basic mode status register (address 1h) is set to one until read by management. Additionally, upon detection of far end fault, all receive and transmit MII activity is disabled/ignored.

3.1.3 100Base-TX Transmitter

ADM7008 implements a TP-PMD compliant transceiver for 100Base-TX operation. The differential transmit driver is shared by the 10Base-T and 100Base-TX subsystems. This arrangement results in one device that uses the same external magnetics for both the 10Base-T and the 100Base-TX transmission with simple RC component connections. The individually wave-shaped 10Base-T and 100Base-TX transmit signals are multiplexed in the transmission output driver selection.

ADM7008 100Base-TX transmission driver implements MLT-3 translation and wave-shaping functions. The rise/fall time of the output signal is closely controlled to conform to the target range specified in the ANSI TP-PMD standard.

3.1.4 100Base-FX Receiver

Signal is received through PECL receiver inputs from fiber transceiver, and directly passed to clock recovery circuit for data/clock recovery. Scrambler/de-scrambler is bypassed in 100Base-FX.

Automatic "Signal_Detect" Function Block

Due to pin limitation, ADM7008 doesn't support SDP/SDN in fiber mode, which is used to connect to fiber transceiver to indicate there is signal on the fiber. Instead, ADM7008 use the data on RXP/RXN to detect consecutive 65 "1" on the receive data (Recovered from RXP/RXN) to determine whether "Signal" is detected or not. When the detect condition is true (Consecutive 65 bits "1"), internal signal detect signal will be asserted to inform receive relative blocks to be ready for coming receive activities.

3.1.5 100Base-FX Transmitter

In 100Base FX transmit, the serial data stream is driven out as NRZI PECL signals, which enters fiber transceiver in differential-pairs form. Fiber transceiver should be available working at 3.3V environment.

3.1.6 10Base-T Module

The 10Base-T Transceiver Module is IEEE 802.3 compliant. It includes the receiver, transmitter, collision, heartbeat, loopback, jabber, waveshaper, and link integrity functions, as defined in the standard. Figure 5 provides an overview for the 10Base-T module.

The ADM7008 10Base-T module is comprised of the following functional blocks:

- Manchester encoder and decoder
- Collision detector
- Link test function
- Transmit driver and receiver
- Serial and parallel interface
- Jabber and SOE test functions
- Polarity detection and correction

3.1.7 Operation Modes

The ADM7008 10Base-T module is capable of operating in either half-duplex mode or full-duplex mode. In half-duplex mode, the ADM7008 functions as an IEEE 802.3 compliant transceiver with fully integrated filtering. The COL signal is asserted during collisions or jabber events, and the CRS signal is asserted during transmit and receive. In full duplex mode the ADM7008 can simultaneously transmit and receive data.

3.1.8 Manchester Encoder/Decoder

Data encoding and transmission begins when the transmission enable input (TXEN) goes high and continues as long as the transceiver is in good link state. Transmission ends when the transmission enable input goes low. The last transition occurs at the center of the bit cell if the last bit is a 1, or at the boundary of the bit cell if the last bit is 0.

A differential input receiver circuit accomplishes decoding and a phase-locked loop that separate the Manchester-encoded data stream into clock signals and NRZ data. The decoder detects the end of a frame when no more midbit transitions are detected. Within one and half bit times after the last bit, carrier sense is deasserted.

3.1.9 Transmit Driver and Receiver

The ADM7008 integrates all the required signal conditioning functions in its 10Base-T block such that external filters are not required. Only one isolation transformer and impedance matching resistors are needed for the 10Base-T transmit and receive interface. The internal transmit filtering ensures that all the harmonics in the transmission signal are attenuated properly.

3.1.10 Smart Squelch

The smart squelch circuit is responsible for determining when valid data is present on the differential receive. The ADM7008 implements an intelligent receive squelch on the RXP/RXN differential inputs to ensure that impulse noise on the receive inputs will not be mistaken for a valid signal. The squelch circuitry employs a combination of amplitude and timing measurements (as specified in the IEEE 802.3 10Base-T standard) to determine the validity of data on the twisted-pair inputs.

The signal at the start of the packet is checked by the analog squelch circuit and any pulses not exceeding the squelch level (either positive or negative, depending upon polarity) will be rejected. Once this first squelch level is overcome correctly, the opposite squelch level must then be exceeded within 150ns. Finally, the signal must exceed the original squelch level within an additional 150ns to ensure that the input waveform will not be rejected.

Only after all these conditions have been satisfied will a control signal be generated to indicate to the remainder of the circuitry that valid data is present.

Valid data is considered to be present until the squelch level has not been generated for a time longer than 200 ns, indicating end of packet. Once good data has been detected, the squelch levels are reduced to minimize the effect of noise, causing premature end-of-packet detection. The receive squelch threshold level can be lowered for use in longer cable applications. This is achieved by setting bit 7 of register address 10h.

3.1.11 Carrier Sense

Carrier Sense (CRS) is asserted due to receive activity once valid data is detected via the smart squelch function. For 10 Mbps half duplex operation, CRS is asserted during either packet transmission or reception. For 10 Mbps full duplex and repeater mode operations, the CRS is asserted only due to receive activity.85

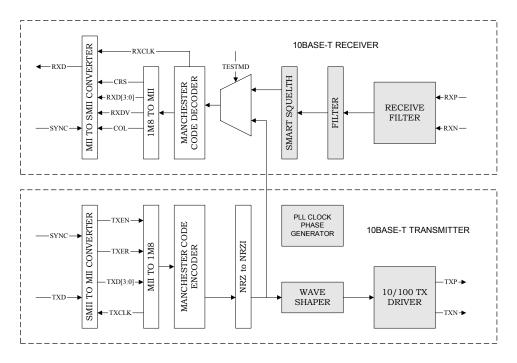


Figure 3-3 10Base-T Block Diagram and Data Path

3.1.12 Collision Detection

The SMII does not have a collision pin. Collision is detected internal to the MAC, which is generated by an AND function of TXEN and CRS derived from TXD and RXD, respectively. The internal MII will still generate the COL signal, but this information is not passed to the AMC via the SMII.

3.1.13 Jabber Function

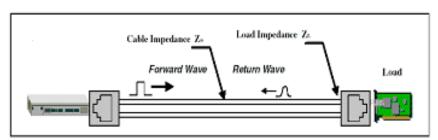
The jabber function monitors the ADM7008 output and disables the transmitter if it attempts to transmit a longer than legal sized packet. If TXEN is high for greater than 24ms, the 10Base-T transmitter will be disabled. Once disabled by the jabber function, the transmitter stays disabled for the entire time that the TXEN signal is asserted. This signal has to be deasserted for approximately 408 ms (The un-jab time) before the jabber function re-enables the transmit outputs. The jabber function can be disabled by programming bit 0 of register address 10h to high.

3.1.14 Link Test Function

A link pulse is used to check the integrity of the connection with the remote end. If valid link pulses are not received, the link detector disables the 10Base-T twisted-pair transmitter, receiver, and collision detection functions.

The link pulse generator produces pulses as defined in IEEE 802.3 10Base-T standard. Each link pulse is nominally 100ns in duration and is transmitted every 16 ms, in the absence of transmit data. Setting bit 10 of register 10h to high can disable link pulse check function.

3.1.15 Automatic Link Polarity Detection


ADM7008's 10Base-T transceiver module incorporates an "automatic link polarity detection circuit". The inverted polarity is determined when seven consecutive link pulses of inverted polarity or three consecutive packets are received with inverted end-of-packet pulses. If the input polarity is reversed, the error condition will be automatically corrected and reported in bit 13 of register 11h.

3.1.16 Clock Synthesizer

The ADM7008 implements a clock synthesizer that generates all the reference clocks needed from a single external frequency source. The clock source must be a TTL level signal at 25 MHz +/- 50ppm.

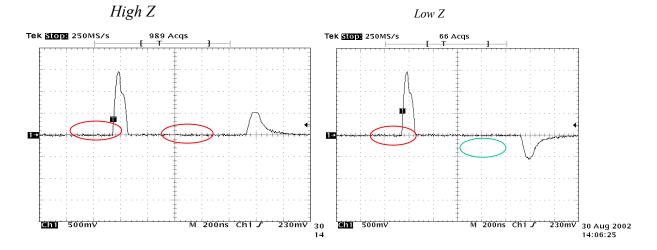
3.1.17 Cable Broken Auto Detection

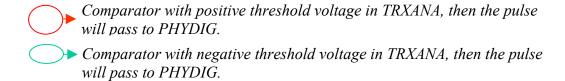
The Cable Broken Auto Detection Feature uses Time Domain Reflectometry (TDR) to determine if the cable opens. The TDR test can be performed when the ADM7008 is Auto-Negotiating or sending 10Mbit idle link pulses. After power on reset, the ADM7008 transmits link pulses down the pair of an attached cable continuously. The magnitude of the reflection and the time it takes for the reflection to come back are recorded. Using the recorded information, the cable status and the distance to the broken location can be determined and are shown in register22.13 and 22.12:11 respectively. If the cable properly terminated there will be no reflections. If there are no reflections it will declare the cable is connected properly. If medium detect function is turn on and the received signal is detected. MD in register 22:10 is "1", it will also declare the cable is not broken. If the cable is connection properly, the cable length can be determined by DSP algorithms at 100M good link state and as indicated in register 22.7:0.

The reflection coefficient is defined as:

$$T_{L} = \frac{\text{Reflected_wave}}{\text{Forward_wave}} = \frac{V_{-}}{V_{+}} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}}$$

There are two diff. Case: (a). $Z_t = \infty$ (open) =>


 $T_r = + J$


Where ZL is the load impedance

Z0 is the cable impedance

The return loss in (dB) is defined as:

$$RL(db) = 20log_{10} 11/T_L I = 20log_{10} \frac{Z_L + Z_0}{Z_L - Z_0}$$

3.1.18 Auto Negotiation

The Auto Negotiation function provides a mechanism for exchanging configuration information between two ends of a link segment and automatically selecting the highest performance mode of operation supported by both devices. Fast Link Pulse (FLP) Bursts provide the signaling used to communicate auto negotiation abilities between two devices at each end of a link segment. For further detail regarding auto negotiation, refer to Clause 28 of the IEEE 802.3u specification. The ADM7008 supports four different Ethernet protocols, so the inclusion of auto negotiation ensures that the highest performance protocol will be selected based on the ability of the link partner.

The auto negotiation function within the ADM7008 can be controlled either by internal register access or by the use of configuration pins are sampled. If disabled, auto negotiation will not occur until software enables bit 12 in register 0. If auto negotiation is enabled, the negotiation process will commence immediately.

When auto negotiation is enabled, the ADM7008 transmits the abilities programmed into the auto negotiation advertisement register at address 04h via FLP bursts. Any combination of 10 Mbits/s, 100 Mbits/s, half duplex and full duplex modes may be selected. Auto negotiation controls the exchange of configuration information. Upon successfully auto negotiation, the abilities reported by the link partner are stored in the auto negotiation link partner ability register at address 05h.

The contents of the "auto negotiation link partner ability register" are used to automatically configure to the highest performance protocol between the local and farend nodes. Software can determine which mode has been configured by auto negotiation

by comparing the contents of register 04h and 05h and then selecting the technology whose bit is set in both registers of highest priority relative to the following list.

- 1. 100Base-TX full duplex (highest priority)
- 2. 100Base-TX half duplex
- 3. 10Base-T full duplex
- 4. 10Base-T half duplex (lowest priority)

The basic mode control register at address 0h provides control of enabling, disabling, and restarting of the auto negotiation function. When auto negotiation is disabled, the speed selection bit (bit 13) controls switching between 10 Mbps or 100 Mbps operation, while the duplex mode bit (bit 8) controls switching between full duplex operation and half duplex operation. The speed selection and duplex mode bits have no effect on the mode of operation when the auto negotiation enable bit (bit 12) is set.

The basic mode status register at address 1h indicates the set of available abilities for technology types (bit 15 to bit 11), auto negotiation ability (bit 3), and extended register capability (bit 0). These bits are hardwired to indicate the full functionality of the ADM7008. The BMSR also provides status on:

- 1. Whether auto negotiation is complete (bit 5)
- 2. Whether the Link Partner is advertising that a remote fault has occurred (bit 4)
- 3. Whether a valid link has been established (bit 2)

The auto negotiation advertisement register at address 4h indicates the auto negotiation abilities to be advertised by the ADM7008. All available abilities are transmitted by default, but writing to this register or configuring external pins can suppress any ability.

The auto negotiation link partner ability register at address 05h indicates the abilities of the Link Partner as indicated by auto negotiation communication. The contents of this register are considered valid when the auto negotiation complete bits (bit 5, register address 1h and bit 4, register 17h) is set.

3.1.19 Auto Negotiation and Speed Configuration

The twelve sets of four pins listed in Table 3-2 configure the speed capability of each channel of ADM7008. The logic state of these pins is latched into the advertisement register (register address 4h) for auto negotiation purpose. These pins are also used for evaluating the default value in the base mode control register (register 0h) according to Table 3-2.

3.2 MAC Interface

The ADM7008 interfaces to eight 10/100 Media Access Controllers (MAC) via the RMII, SMII, or Source Synchronous MII (SS_SMII) Interface. All ports on the device operate in the same interface mode that is selected.

3.2.1 Reduced Media Independent Interface (RMII)

The reduced media Independent interface (RMII) is compliant to the RMII consortium's RMII Rev. 1.2 specification. The REFCLK pin that supplies the 50 MHz reference clock to the AD2106 is used as the RMII REFCLK signal. All RMII signals with the exception of the assertion of CRSDV P are synchronous to REFCLK.

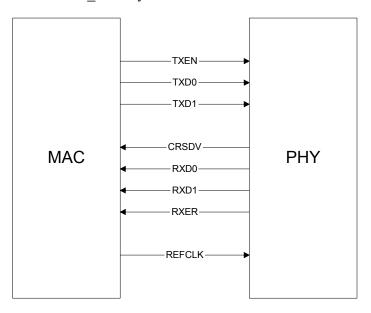


Figure 3-4 RMII Signal Diagram

3.2.2 Receive Path for 100M

Figure 3-5 shows the relationship among REFCLK, CRSDV_P, RXD0_P, RXD1_P and RXER_P while receiving a valid packet. Carrier sense is detected, which causes CRSDV_P to assert asynchronously to REFCLK. The received data is then placed into the FIFO for resynchronization. After a minimum of 12 bits are placed into the FIFO, the received data is presented onto RXD[1:0]_P synchronously to REFCLK. Note that while the FIFO is filling up RXD[1:0]_P is set to 00 until the first received di-bit of preamble (01) is presented onto RXD[1:0]_P. When carrier sense is de-asserted at the end of a packet, CRSDV_P is de-asserted when the first di-bit of a nibble is presented onto RXD[1:0]_P synchronously to REFCLK. If there is still data in the FIFO that has not yet been presented onto RXD[1:0]_P, then on the second di-bit of a nibble, CRSDV_P reasserts. This pattern of assertion and de-assertion continues until all received data in the FIFO has been presented onto RXD[1:0]_P. RXER_P is inactive for the duration of the received valid packet.

Figure 3-6 shows the relationship among REFCLK, CRSDV_P and RXD[1:0]_P during a received false carrier event. CRSDV_P is asserted asynchronously to REFCLK as in the valid receive case shown in Figure 3-5. However, once false carrier is detected, RXD[1:0]_P is changed to (10) (11) (Value 1110 in MII) and RXER_P is asserted. Both RXD[1:0] P and RXER_P transition synchronously to REFCLK. After carrier sense is

de-asserted, CRSDV P is de-asserted synchronously to REFCLK.

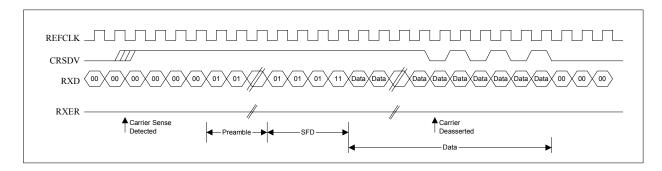


Figure 3-5 RMII Reception Without Error

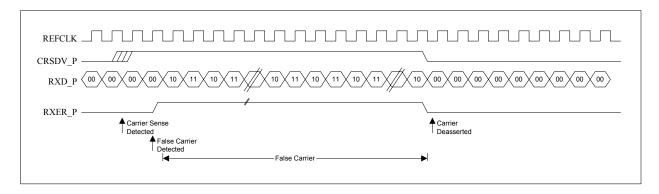


Figure 3-6 RMII Reception with False Carrier (100M Only)

A receive symbol error event is shown in Figure 3-7. The packet with the symbol error is treated as if it were a valid packet with the exception that all di-bits are substituted with the (01) pattern.

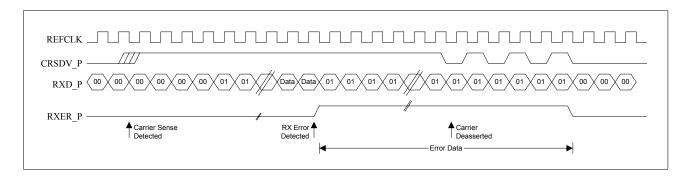


Figure 3-7 RMII Reception with Symbol Error

3.2.3 Receive Path for 10M

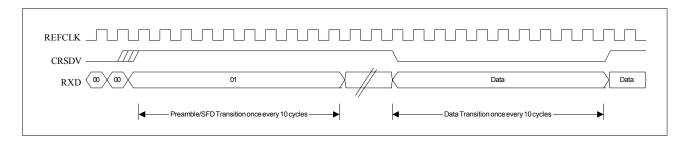


Figure 3-8 10M RMII Receive Diagram

In 10M Mode, RXER_P will maintain low all the time due to False Carrier and symbol error is not supported by 10M Mode. Different from 100M mode, RXD_P and CRSDV_P can transition once per 10 REFCLK cycles. After carrier sense is de-asserted yet the FIFO data is not fully presented onto RXD_P, the CRSDV_P de-assertion and reassertion also follows this rule.

3.2.4 Transmit Path for 100M

Figure 3-9 shows the relationship among REFCLK, TXEN_P and TXD[1:0]_P during a transmit event. TXEN_P and TXD[1:0]_P are synchronous to REFCLK. When TXEN_P is asserted, it indicates that TXD[1:0]_P contains valid data to be transmitted. When TXEN_P is de-asserted, value on TXD[1:0]_P should be ignored. If an odd number of di-bits are presented onto TXD[1:0]_P and TXEN_P, the final di-bit will be discarded by AD2106.

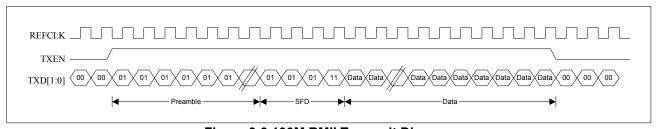


Figure 3-9 100M RMII Transmit Diagram

3.2.5 Transmit Path for 10M

In 10MBSE-T mode, each di-bit must be repeated 10 times by the MAC, TXEN_P and TXD[1:0]_P should be synchronous to REFCLK. When TXEN_P is asserted, it indicates that data on TXD[1:0]_P is valid for transmission.

In 10BASE-T mode, it is possible that the number of preamble bits and the number of frame bits received are not integer nibbles. The preamble is always padded up such that the SFD appears on the RMII aligned to the nibble boundary. Extra bits at the end of the frame that do not complete a nibble are truncated by AD2106. Figure 12 shows the

timing diagram for 10M Transmission.

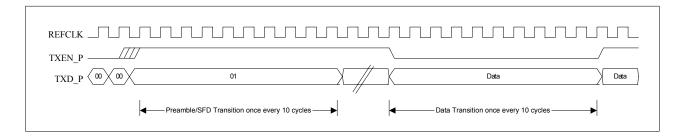


Figure 3-10 10M RMII Transmit Diagram

	Recommen	d Value	Auto Ne	gotiation	Capability					
ANENDIS	REC_10M	TP_FULLDUPLEX	Enable	Disable	100 Full	100 Half	10 Full	10 Half		
0	0	1	✓		✓	✓	✓	✓		
0	0	0	✓			✓		✓		
0	1	1	✓				✓	✓		
0	1	0	✓					✓		
1	0	1		✓	✓					
1	0	0		✓		✓				
1	1	1		✓			✓			
1	1	0		✓				✓		

Table 3-2 Channel Configuration

3.2.6 Serial and Source Synchronous Media Independent Interface

The Synchronous Media Independent Interface (SMII) conforms to the SMII specification Rev. 2.1. The REFCLK pin that supplies the 125MHz reference clock to the ADM7008 is used as the SMII/Serial and Source Synchronous Media Independent Interface (SS_SMII) reference clock.

All SMII/SS_SMII signals are synchronous to REFCLK. The differences between SMII and SS_SMII are

- 1.SMII shares the same SYNC signal from MAC yet SS_SMII take TX_SYNC signal as synchronization input for transmission and output RX_SYNC to MAC for reception synchronization usage.
- 2.SMII use REFCLK (125MHz) for both receive and transmit blocks. SS_SMII takes TXCLK as transmit block reference clock and output an 125MHz RXCLK to MAC for receive usage. All signals output from ADM7008 are synchronous to RXCLK.

In this mode, REFCLK will be divided by 5 to generate 25M clock before it is fed into ADM7008 internal PLL block. SS_SMII mode is enabled by setting RSMODE1 (pin 43)

to low and placing a pull up resistor on CRSDV_P6. In this mode, CRSDV_P[3] becomes RX_SYNC, CRSDV_P4 becomes RXCLK and TXEN_P4 acts as TX_SYNC.

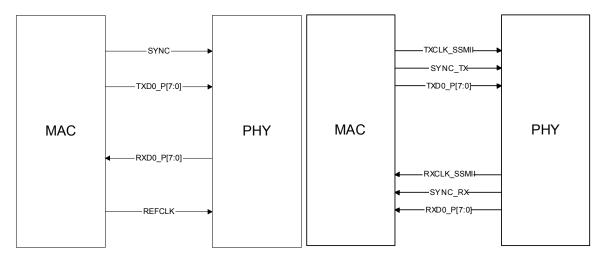


Figure 3-11 SMII Signal Diagram

Figure 3-12 SS_SMII Signal Diagram

3.2.7 100M Receive Path

Received data and control information is grouped in 10-bit segments that are delimited by the SYNC signal in SMII mode (or SYNC_RX in SS_SMII mode) as shown in figure 15. Each segment represents a new byte of data.

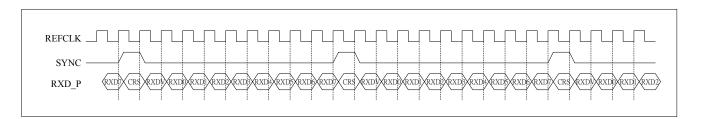


Figure 3-13 100M SMII Receive Timing Diagram

In SS_SMII mode, REFCLK and SYNC are no longer common for both transmit and receive blocks. They are renamed to RXCLK and RX_SYNC.

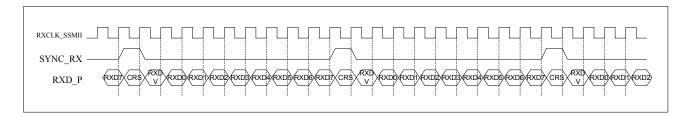


Figure 3-14 100M SS_SMII Receive Timing Diagram

In SMII mode, when RXDV bit is high, RXD[7:0] are used to convey packet data; when RXDV bit is low, RXD[7:0] are carrying PHY status. See Table 3-3 for more detail.

CRS	RXDV	RXD0	RXD1	RXD2	RXD3	RXD4	RXD5	RXD6	RXD7				
X	0	RXER From	Speed	Duplex	Link	Jabber	Upper	False	1				
		Previous					Nibble	Carrier					
		Frame	0 = 10 Mb/s	0 = Half	0 = Down	0 = O.K.	0 = Invalid						
			1 =	1 = Full	1 = Up	1 = Error	1 = Valid	0 = NO					
			100Mb/s					1 =					
								Detected					
X	1		One Data Byte (Two MII Data Nibble)										

Table 3-3 Receive Data Encoding for SMII/SS_SMII mode

3.2.8 10M Receive Path

Similar to 100M Receive path except that each segment is repeated 10 times. The MAC can sample any one of every 10 segments in 10BASE-T mode. The MAC also has to generate a SYNC pulse once every 10 clock cycles.

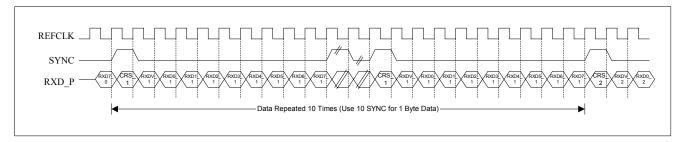


Figure 3-15 10M SMII Receive Timing Diagram

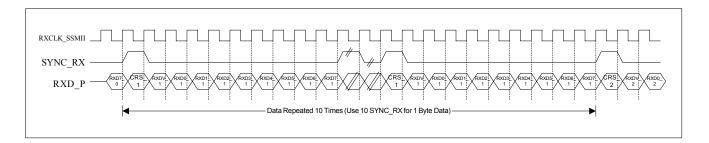


Figure 3-16 10M SS_SMII Receive Timing Diagram

3.2.9 100M Transmit Path

Similar to 100M Receive path, transmit data is grouped in 10-bit segments that are delimited by the SYNC signal (or TX_SYNC in SS_SMII mode), each segment represents a new byte of data. See Figure 3-17 for 100M SMII transmit timing diagram and Figure 3-18 for SS_SMII timing diagram.

In SS_SMII mode, REFCLK and SYNC are no longer commonly used for both transmit and receive blocks. They are renamed to TXCLK and TX_SYNC. When TXEN bit is low, data on TXD[7:0] will be ignored by ADM7008. See Table 3-4 transmit data encoding for more detail.

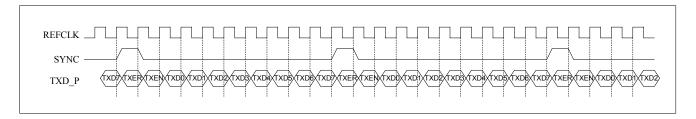


Figure 3-17 100M SMII Transmit Timing Diagram

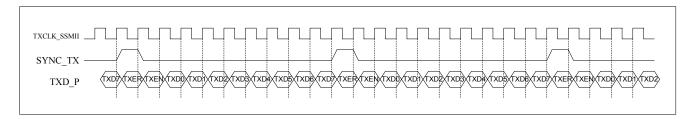


Figure 3-18 100M SS_SMII Transmit Timing Diagram

3.2.10 10M Transmit Path

In 10BASE-T mode, each segment must be repeated 10 times by the MAC. In this mode, the MAC must generate the same data in each of the 10 segments. ADM7008 will sample the incoming data at the 5th SYNC (or SYNC TX) location.

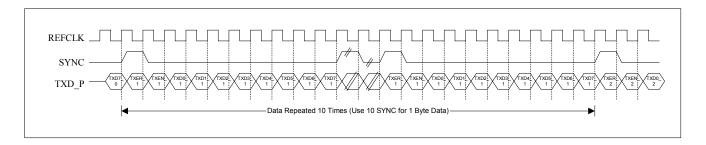


Figure 3-19 10M SMII Transmit Timing Diagram

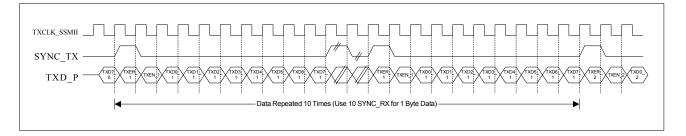


Figure 3-20 10M SS SMII Transmit Timing Diagram

3.3 LED Display

Register 19 is used for different mode led display. There are two kind of led display mechanisms provided by ADM7008: single and dual color led mode, either mode provide power on LED self test to minimize and ease the system test cost.

3.3.1 Single Color LED

When Single Color LED is programmed (DUALLED is set to low during power on reset), all ports LED will be Off during power on reset (Output value same as recommend value on LED pins). After power on reset, all internal parallel LEDs will be On for 2 seconds, internal parallel LED status will be streamed out through LED_DATA and this signal is output by ADM7008 at the falling edge of LED_CLK. Before describing the serial LED output data format, we tend to describe the meaning of internal parallel LEDs.

There are three types of LED supported by ADM7008 internally. The first is LNKACT, which represents the status of Link and Transmit/Receive Activity; the second is LDSPD, which indicates the speed status and the last is DUPCOL, which shows pure duplex status in full duplex and duplex/collision combined status in half duplex. All these three LED can be controlled by Register 19 to change display contents.

After LED self test, Table 3-4, 3-5 and 3-6 show the On/Off polarity according to different recommended value setting for LDSPD, DUPCOL and LNKACT. When the recommend value is high, ADM7008 will drive LED LOW; ADM7008 will drive the LED HIGH when the recommend value is low, instead.

SPEED	LDSPD
10M	0
100M	1
LINK FAIL	1

Table 3-4 Speed LED Display

	HALF	FULL			
LINK UP	Blink (HIGH) When Collision	LOW All the Time			
LINK FAIL	HIGH All the Time	HIGH All the Time			

Table 3-5 Duplex LED Display

CDEED	Link/Activity						
SPEED	Link	Activity					
LINK UP	LOW	Blink (HIGH) When RX/TX					
LINK FAIL	HIGH All the Time	HIGH All the Time					

Table 3-6 Activity/Link LED Display

Blinking time is programmed through BLINK_TM[1:0] in register 19 bit 13 to 12. Combined with detected speed within each port, different blinking time will be determined and this different blinking time can be used to distinguish the speed. Blinking time is summarized in Table 3-7.

DI DUZ TM	Blinking Time						
BLINK_TM	10M	100M					
00	100 ms	100 ms					
01	200 ms	100 ms					
10	400 ms	100 ms					
11	100 ms	50 ms					

Table 3-7 Different Blinking Time for Different Speed

Besides duplex, speed, link and activity status, ADM7008 also provides cable information that can be shown on LEDs when register 19 is programmed to distance LED display (see Table 3-8).

LNKACT	DUPCOL	LEDSPD	Cable Distance
1	1	0	0 to 40 meters
1	0	0	40 to 80 meters
0	0	0	80 to 120 meters
1	1	1	Cable Broken

Table 3-8 Cable Distance LED Display

3.3.2 Dual Color LED

When Dual Color LED is programmed (DUALLED is set to high during power on reset), all ports LED will be off during power on reset (Output high on LNKACT and LDSPD and output recommend value on DUPCOL). After power on reset, all LEDs will be on for 1 seconds to test 10M mode LNKACT/LDSPD connection and on for another 1 second to test 100M mode LNKACT/LDSPD wire connection. This period allow manufacture operator to check whether the LED wire connection on PCB board is correct or not.

After LED self-test, Table 3-9 and Table 3-10 show the On/Off polarity according to different speed detected by ADM7008. DUPCOL is always set to single color mode display no matter the value of DUALLED is.

SPEED	LDSPD
10M	0
100M	1
LINK FAIL	1

Table 3-9 Speed LED Display

CDEED	Link/Activity						
SPEED	Link	Activity					
100M LINK UP	LOW	Blink (HIGH) When RX/TX					
10M LINK_UP	HIGH	Blink (LOW) When RX/TX					
LINK FAIL	HIGH All the Time	HIGH All the Time					

Table 3-10 Activity/Link LED Display

Cable Length LED display mode controlled by register 19 will be disabled when dual color mode is selected, by not displaying cable length, instead, ADM7008 display LED status by default setting, i.e., LNKACT for Link/Activity LED, DUPCOL for duplex/collision display and LDSPD for speed indication.

Refer to Table 3-7 for dual color blinking time.

3.3.3 Serial Output LED Status

Internal LED status will be streamed output through two pins – LED_DATA and LED_CLK, where LED_DATA is used to indicate internal 8 port LED status and synchronous to LED_CLK. Serial LED output sequence is programmed through DUALLED during power on reset. RSMODE1 also affects the sequence of LED_DATA and will be described as follows.

3.3.4 RMII Mode (RSMODE1 = 1)

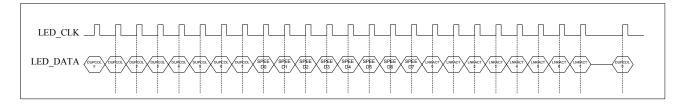


Figure 3-21 Stream LED under RMII Mode

3.3.5 SMII/SS SMII Mode (RSMODE1 = 0)

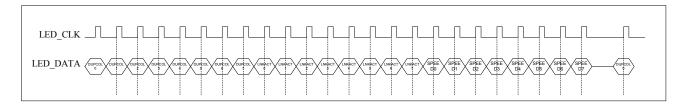


Figure 3-22 Stream LED under SMII/SS_SMII Mode

The high duration for LED_CLK is 40ns and the low duration is 600ns to form 640ns period clock. ADM7008 will burst 24 bit status in one time in order to display internal LINK/Activity, Duplex/Collision and Speed status according to different mode. When a burst is completed, LED_CLK will keep low for 40 ms and system can use it to distinguish between two bursts.

3.4 Management Register Access

The SMI consists of two pins, management data clock (MDC) and management data input/output (MDIO). The ADM7008 is designed to support an MDC frequency specified in the IEEE specification of up to 2.5 MHz. The MDIO line is bi-directional and may be shared by up to 32 devices.

The MDIO pin requires a 1.5 K Ω pull-up which, during idle and turnaround periods, will pull MDIO to a logic one state. Each MII management data frame is 64 bits long. The first 32 bits are preamble consisting of 32 contiguous logic one bits on MDIO and 32 corresponding cycles on MDC. Following preamble is the start-of-frame field indicated by a <01> pattern. The next field signals the operation code (OP) : <10> indicates read from MII management register operation, and <01> indicates write to MII management register operation. The next two fields are PHY device address and MII management register address. Both of them are 5 bits wide and the most significant bit is transferred first.

During Read operation, a 2-bit turn around (TA) time spacing between the register address field and data field is provided for the MDIO to avoid contention. Following the turnaround time, a 16-bit data stream is read from or written into the MII management registers of the ADM7008.

3.4.1 Preamble Suppression

The ADM7008 supports a preamble suppression mode as indicated by an 1 in bit 6 of the basic mode status register (Register 1h). If the station management entity (i.e. MAC or other management controller) determines that all PHYs in the system support preamble suppression by reading a 1 in this bit, then the station management entity needs not generate preamble for each management transaction. The ADM7008 requires a single initialization sequence of 32 bits of preamble following powerup/hardware reset. This requirement is generally met by pulling-up the resistor of MDIO. While the ADM7008 will respond to management accesses without preamble, a minimum of one idle bit between management transactions is required as specified in IEEE 802.3u.

When ADM7008 detects that there is physical address match, then it will enable Read/Write capability for external access. When neither physical address nor register address is matched, then ADM7008 will tri-state the MDIO pin.

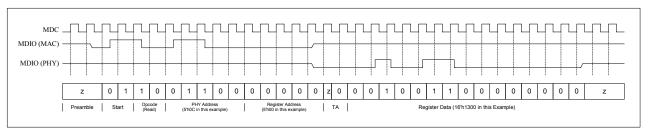


Figure 3-23 SMI Read Operation

3.4.2 Reset Operation

The ADM7008 can be reset either by hardware or software. A hardware reset is accomplished by applying a negative pulse, with duration of at least 200 ms to the RC pin of the ADM7008 during normal operation to guarantee internal Power On Reset Circuit is reset well. Software reset is activated by setting the reset bit in the basic mode control register (bit 15, register 0h). This bit is self-clearing and, when set, will return a value of 1 until the software reset operation has completed, please note that internal SRAM will not be reset during software reset.

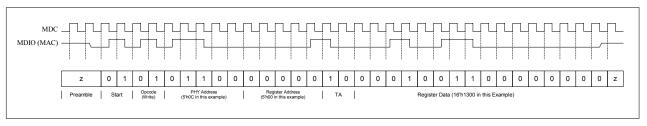


Figure 3-24 SMI Write Operation

Hardware reset operation samples the pins and initializes all registers to their default values. This process includes re-evaluation of all hardware configurable registers. A hardware reset affects all the eight PHYs in the device.

A software reset can reset an individual PHY and it does not latch the external pins nor reset the registers to their respective default value.

Logic levels on several I/O pins are detected during a hardware reset to determine the initial functionality of ADM7008. Some of these pins are used as output ports after reset operation.

Care must be taken to ensure that the configuration setup will not interfere with normal operation. Dedicated configuration pins can be tied to VCC or Ground directly. Configuration pins multiplexed with logic level output functions should be either weakly pulled up or weakly pulled down through resistors. Configuration pins multiplexed with LED outputs should be set up with one of the following circuits shown in Figure 3-24.

3.5 Power Management

There are two types of power saving mode provided by ADM7008: Receive Power Saving (So Called Medium Detect Power Saving) and Transmit Power Saving Mode (So Called Low Power Link Pulse power saving mode).

3.5.1 Medium Detect Power Saving

An analog block is designed for carrier sense detecting. When there is no carrier sense presented on medium (cable not attached), then "SIGNAL DETECT" will not be ON. Whenever cable is attached to ADM7008 and the voltage threshold is above +/- 50mV, then SD will be asserted HIGH to indicate that there is cable attached to ADM7008. All internal blocks except Management block will be disabled (reset) before SD is asserted.

When SD is asserted, internal Auto Negotiation block will be turned on and the 10M transmit driver will also be turned on for auto negotiation process. Auto negotiation will issue control signals to control 10M receive and 100M A/D block according to different state in arbitration block diagram. During auto negotiation, all digital blocks except management and link monitor blocks will be disabled to reduce power consumption.

Whenever operating speed is determined (Either auto negotiation is On or Off), the non-active speed relative circuit will be disabled all the time to save more power. For example, when corresponding port is operating on 10M, then 100M relative blocks will be disabled and 10M relative blocks will be disabled whenever corresponding port is in 100M mode. Auto negotiation block will be reset when SD signal goes from high to low. See Figure 3-25 for the state diagram for this algorithm.

3.5.2 Transmit Power Saving

In ADM7008, enabling TX Power Saving Feature could save transmit power before any link partner trying to link up. Two transmit power saving methods are applied to ADM7008 by register 17.5 configuration. When setting register 17.5 to "0", the transmit-driver will lower the driving current all the time to save power before the receiver detects signals coming in. When setting to "1", ADM7008 transmit Low-power Link Pulse (LLP) to the cable. The waveform of LLP is the same as NLP and FLP, the difference is the period of LLP is around 100ms. Besides the longer period, ADM7008 also lower the transmit-driving current between sending a pulse and a pulse. The TX Power Saving Feature is activated by setting ADM7008 of N-way or 10M capabilities. See Figure 3-26 for reference.

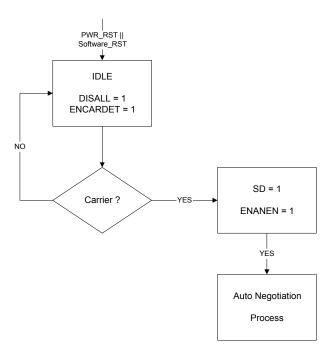


Figure 3-25 Medium Detect Power Management Flow Chart

Another way to reduce instant power is to separate the LED display period. All 24 LEDs will be divided into 24 time frame and each time frame occupies 1 us. One and only one LED will be driven at each time frame to reduce instant current consumed from LED.

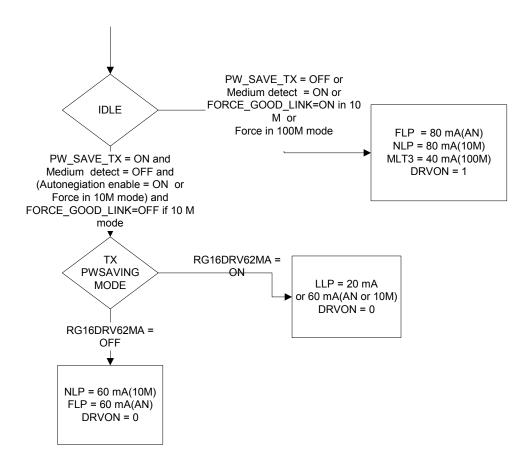


Figure 3-26 Low Power Link Pulse during TX for Power Management

3.6 Voltage Regulator

ADM7008 requires two different levels, 3.3V and 1.8V, of voltage supply to provide the power to different parts of circuitry inside the chip. ADM7008 has a build-in voltage regulator circuitry to generate the 1.8V voltage from 3.3V power source. Therefore, an external PNP power transistor is also needed and the block diagram of voltage regulator is shown as below.

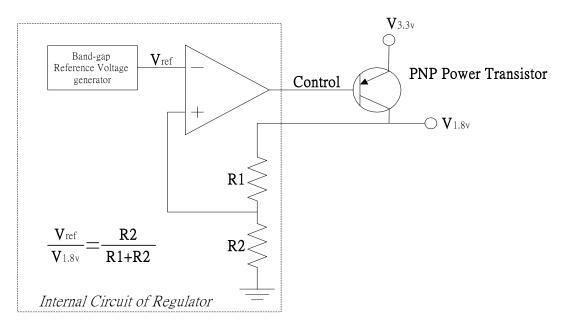


Figure 3-27 External PNP Power Transistor Diagram

Chapter 4 Register Description

Note:

Please refer to section '1.5.2 Register Type Descriptions' for an explanation of pin abbreviations.

4.1 Register Mapping

Address	Register Name	Default
0h	Control Register	3000
1h	Status Register	7849
2h-3h	PHY Identifier Register	CC42002E
4h	Auto Negotiation Advertisement Register	01E1
5h	Auto Negotiation Link Partner Ability Register	01E1
6h	Auto Negotiation Expansion Register	0000
7h - Fh	Reserved	Reserved
10h	PHY Control Register	1000
11h	PHY 10M Configuration Register	0008
12h	PHY 100M Configuration Register	0022
13h	LED Configuration Register	0A34
14h	Interrupt Enable Register	03FF
16h	PHY Generic Status Register	0000
17h	PHY Specific Status Register	0060
18h	Recommend Value Storage Register	0000
19h	Global Interrupt Status Register	0000
1Dh	Receive Error Counter	0000
1Eh	Chip ID Register "AT"	8818
1Fh	Global Interrupt Register (Only available in port 0)	0000

4.2 Register Bit Mapping

4.2.1 Register #0h -- Control Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RST	LPBK	SPD_L	ANEN	PDN	ISO	RSTAR	DPLX	COLTST	SPDMSB	0	0	0	0	0	0
R/W	D/W/	R/W	D/W	D/W/	D/W	D/W/	DIN	D /W/	D/W/	PΩ	PΩ	PΩ	PΩ	PΩ	PO

4.2.2 Register #1h – Status Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CAPT4	TXFUL	TXHALF	TFUL	THALF	CAPT2	0	0	0	MFSUP	ANCOMP	RMFLT	ANEN	LINK	JAB	EXTCAP
RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO

4.2.3 Register #2h – PHY ID Register (002E)

4.2.4 Register #3h – PHY ID Register (CC11)

4.2.5 Register #4h – Advertisement Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
NPAGE	0	RF	0	ASM_DIR	PAUSE	T4	FDX100	HDX100	FDX10	HDX10	0	0	0	0	1
R/W	RO	R/W	RO	R/W	R/W	RO	R/W	R/W	R/W	R/W	RO	RO	RO	RO	RO

4.2.6 Register #5h – Link Partner Ability Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
NPAGE	ACK	RF	0	LP_DIR	LP_PAU	LP_T4	LP_FDX	LP_HDX	LP_F10	LP_H10	0	0	0	0	1
RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO

4.2.7 Register #6h – Auto Negotiation Expansion Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	PDFLT	LPNPAB	NPABLE	PGRCV	LPANAB
RO	RO	RO	RO	RO											

4.2.8 Register #7h – # Fh Reserved

4.2.9 Register #10h – PHY Configuration Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IFSEL	0	0	0	0	0	0	0	0	0	0	XOVEN	0	0	0	DISPMG
RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	RO	R/W

4.2.10 Register #11h – 10M Configuration Register	4.2.10	Register #	#11h –	10M	Configuration	Register
---	--------	------------	--------	-----	---------------	----------

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	DRV62mA	APDIS	ENRJAB	DISTJAB	NTH	FGDLNK
RO	R/W	R/W	R/W	R/W	R/W	R/W									

4.2.11 Register #12h – 100M Configuration Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	SELFX	0	0	DISSCR	ENFEFI	0	1	0
RO	R/W	RO	RO	R/W	R/W	RO	RO	RO							

4.2.12 Register #13h – LED Configuration Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	LNKC3	LNKC2	LNKC1	LNKC0	DUPC3	DUPC2	DUPC1	DUPC0	SPDC3	SPDC2	SPDC1	SPDC0
RO	RO	RO	RO	R/W											

4.2.13 Register #14h – Interrupt Enable Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	XOVCHG	SPDCHG	DUPCHG	PGRCHG	LNKCHG	SYMERR	FCAR	FOURUN	TJABINT	RJABINT
RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

4.2.14 Register #16h – PHY Generic Status Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	CBBRK	BRK1	BRK0	MD	FXEN	XOVER	CBLEN7	CBLEN6	CBLEN5	CBLEN4	CBLEN3	CBLEN2	CBLEN1	CBLEN0
RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO

4.2.15 Register #17h – PHY Specific Status Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	JABRX	JABTX	POLAR	PAUOUT	PAUIN	DUPLEX	SPEED	LINK	RECPAU	RECDUP	RECSPD	RECAN
RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO

4.2.16 Register #18h – Recommend Value Storage Register

1:	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PWR	DN R	ECAN	SELFX	REC100	RECFUL	PAUREC	DISFEFI	XOVEN	XOVER	RMII SMII	REPEATER	PHYA4	PHYA3	PHYA2	PHYA1	PHYA0
RO	o	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO

4.2.17 Register #19h – Interrupt Status Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	XOVCHG	SPDCHG	DUPCHG	PGRCHG	LNKCHG	SYMERR	FCAR	FOURUN	TJABINT	RJABINT
RO	RO	RO	RO	RO	RO	RO	RO	RO	RO						

4.2.18 Register #1dh – Receive Error Counter

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ERB15	ERB14	ERB13	ERB12	ERB11	ERB10	ERB9	ERB8	ERB7	ERB6	ERB5	ERB4	ERB3	ERB2	ERB1	ERB0
RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO

4.2.19 Register #1eh – Chip ID (8888)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CID33	CID32	CID31	CID30	CID23	CID22	CID21	CID20	CID13	CID12	CID11	CID10	CID03	CID02	CID01	CID00
RO															

4.2.20 Register #1fh –Total Interrupt Status (only For Port 0)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
INT7	INT6	INT5	INT4	INT3	INT2	INT1	INT0	0	0	0	0	0	0	0	0
RO	RO	RO	RO	RO	RO	RO	RO	RO							

4.3 Register Description

4.3.1 Control (Register 0h)

Bit #	Name	Description	Type	Default	Interface
15	RST	RESET	R/W	0h	1.Updated by
		1: PHY Reset	SC		MDC/MDIO.
		0: Normal operation			2.Connect to
		Setting this bit initiates the software reset			Central
		function that resets the selected port,			Control Block
		except for the phase-locked loop circuit.			to Generate
		It will re-latch in all hardware			Reset Signal.
		configuration pin values. The software			
		reset process takes 25us to complete.			
		This bit, which is self-clearing, returns a			
		value of 1 until the reset process is			
		complete.	-		
14	LPBK	Back Enable	R/W	0h	1.Updated by
		1:Enable loop back mode			MDC/MDIO
		0: Disable Loop back mode			Only.
		This bit controls the PHY loop back			Control the Wire
		operation that isolates the network			connection in
		transmitter outputs (TXP and TXN) and			Driver
		routes the MII transmit data to the MII			
		receive data path. This function should			
		only be used when auto negotiation is			

Bit #	Name	Description	Type	Default	Interface
		disabled (bit12 = 0). The specific PHY (10Base-T or 100Base-X) used for this operation is determined by bits 12 and 13.			
13	SPEED_LS B	Speed Selection LSB 0.60.13	R/W	1h	When Auto Negotiation is
	J	0 0 10 Mbps 0 1 100 Mbps 1 0 1000 Mbps 1 1 Reserved Link speed is selected by this bit or by auto negotiation if bit 12 of this register is set (in which case, the value of this bit is ignored).			enable, this pin has no effect.
12	ANEN	Auto Negotiation Enable 1: Enable auto negotiation process 0: Disable Auto negotiation process This bit determines whether the link speed should set up by the auto negotiation process or not. It is set at power up or reset if the PI_RECANEN pin detects a logic 1 input level in Twisted-Pair Mode.	R/W	1h	This bit ANDed with PI_RECANEN pin determines auto negotiation capability of PHY841F.
11	PDN	Power Down Enable 1: Power Down 0: Normal Operation Ored result with PI_PWRDN pin. Setting this bit high or asserting the PI_PWRDN puts the PHY841F into power down mode. During the power down mode, TXP/TXN and all LED outputs are tri-stated and the MII/RMII interfaces are isolated.	R/W	Oh	1.Only Access through MDC/MDIO
10	ISO	Isolate PHY841F from Network 1: Isolate PHY from MII/RMII 0: Normal Operation Setting this control bit isolates the part from the RMII/MII, with the exception of the serial management interface. When this bit is asserted, the PHY841F does not respond to TXD, TXEN and TXER inputs, and it presents a high impedence on its TXC, RXC, CRSDV, RXER, RXD, COL and CRS outputs.	R/W	0h	1.Only Access through MDC/MDIO 2.Used to reset corresponding port.

Bit #	Name	Description	Type	Default	Interface
9	ANEN_RS	Restart Auto Negotiation	R/W	0h	
	T	1: Restart Auto Negotiation Process	SC		
		0: Normal Operation			
		Setting this bit while auto negotiation is			
		enabled forces a new auto negotiation			
		process to start. This bit is self-clearing			
		and returns to 0 after the auto negotiation			
8	DDI V	process has commenced.	D/W	Ω1-	This bit Ored
8	DPLX	Duplex Mode	R/W	_	with RECFUL
		1: Full Duplex mode			pin determines
		0: Half Duplex mode			the duplex
		If auto negotiation is disabled, this bit			capability of
		determines the duplex mode for the link.			PHY841F when
					ANEN disabled.
7	COLTST	Collision Test	R/W	0h	
		1: Enable COL signal test			
		0: Disable COL signal test			
		When set, this bit will cause the COL			
		signal of MII interface to be asserted in			
		response to the assertion of TXEN.			
6	SPEED_M	Speed Selection MSB	RO	0h	Always 0.
	SB	Set to 0 all the time indicate that the			
		PHY841F does not support 1000 Mbps			
		function.			
5:0	Reserved		RO	00h	Always 0.

4.3.2 Status (Register 1h)

Bit #	Name	Description	Type	Default	Interface
15	CAP_T4	100Base-T4 Capable	RO	0h	
		Set to 0 all the time to indicate that the			
		PHY841F does not support 100Base-T4			
14	CAP_TXF	100Base-X Full Duplex Capable	RO	1h	
		Set to 1 all the time to indicate that the			
		PHY841F does support Full Duplex			
		mode			
13		100Base-X Half Duplex Capable	RO	1h	
		Set to 1 all the time to indicate that the			
		PHY841F does support Half Duplex			
		mode			
12	CAP_TF	10M Full Duplex Capable	RO	1h	
		TP : Set to 1 all the time to indicate that			
		the PHY841F does support 10M Full			

Bit #	Name	Description	Type	Default	Interface
11	CAP_TH	Duplex mode FX: Set to 0 all the time to indicate that the PHY841F does not support 10M Full Duplex mode 10M Half Duplex Capable TP: Set to 1 all the time to indicate that the PHY841F does support 10M Half Duplex mode FX: Set to 0 all the time to indicate that the PHY841F does not support 10M Half Duplex mode	RO	1h	
10	CAP_T2	100Base-T2 Capable Set to 0 all the time to indicate that the PHY841F does not support 100Base-T2	KO	OII	
9:7	Reserved	TP	RO	0h	
		MF Preamble Suppression Capable This bit is hardwired to 1 indicating that the PHY841F accepts management frame without preamble. Minimum 32 preamble bits are required following power-on or hardware reset. One idle bit is required between any two management transactions as per IEEE 802.3u specification.	RO	1h	Use to Control MDC/MDIO State Machine.
5	AN_COMP	Auto Negotiation Complete 1: Auto Negotiation process completed 0: Auto Negotiation process not completed If auto negotiation is enabled, this bit indicates whether the auto negotiation process has been completed or not. Set to 0 all the time when Fiber Mode is selected.	RO		Status Updated by Auto Negotiation Control Block.
4	REM_FLT	Remote Fault Detect 1: Remote Fault detected 0: Remote Fault not detected This bit is latched to 1 if the RF bit in the auto negotiation link partner ability register (bit 13, register address 05h) is set or the receive channel meets the far end fault indication function criteria. It is unlatched when this register is read.	RO		Status Updated by Auto Negotiation Control Block
3	CAP_ANE	Auto Negotiation Ability	RO	1h	
	G	1: Capable of auto negotiation			

Bit #	Name	Description	Type	Default	Interface
		0: Not capable of auto negotiation			
		TP: This bit is set to 1 all the time,			
		indicating that PHY841F is capable of			
		auto negotiation.			
		FX : This bit is set to 0 all the time,			
		indicating that PHY841F is not capable			
		of auto negotiation in Fiber Mode.			
2	LINK	Link Status	RO,	0h	Updated By Per
		1: Link is up	LL		port Link
		0: Link is down			Monitor
		This bit reflects the current state of the			
		link -test-fail state machine. Loss of a			
		valid link causes a 0 latched into this bit.			
		It remains 0 until this register is read by			
		the serial management interface.			
		Whenever Linkup, this bit should be read			
		twice to get link up status			
1	JAB	Jabber Detect	RO,	0h	Updated by Per
		1: Jabber condition detected	LH		port Jabber
		0: Jabber condition not detected			Detector
0	EXTREG	Extended Capability	RO	1h	
		1: Extended register set			
		0: No extended register set			
		This bit defaults to 1, indicating that the			
		PHY841F implements extended registers.			

4.3.3 PHY Identifier Register (Register 2h)

Bit #	Name	Description	Type	Default	Interface
15:0	PHY-	IEEE Address	RO	002E	Rg2_PHY_ID
	ID[15:0]				Input

4.3.4 PHY Identifier Register (Register 3h)

Bit #	Name	Description	Type	Default	Interface
15:10	PHY-	IEEE Address/Model No./Rev. No.	RO	CC10	RG3_PHY_ID
	ID[15:0]				Input
9:4	MODEL[5:	ADMTEK PHY Revision ID.	RO	CC10	RG3_MODEL_I
	0]				D Input
3:0	REV-	ADMTEK PHY Revision ID.	RO	4 h0	Rev_id input
	ID[3:0]				

4.3.5 Advertisement (Register 4h)

		(Register 411)			
Bit #	Name	Description		Default	Interface
15	NP	Next Page	R/W	0h	
		This bit is defaults to 1, indicating that			
		PHY841F is next page capable.			
14	Reserved		RO	0h	
13	RF	Remote Fault	R/W	0h	S/W should read
		1 Remote Fault has been detected			status from
		0 No remote fault has been detected			Register 1 (bit
		This bit is written by serial management			1.4) and fill out
		interface for the purpose of			this bit during
		communicating the remote fault			Auto Negotiation
		condition to the auto negotiation link			in case Remote
		partner.			Fault is detected.
12	Reserved		RO	0h	
11	ASM_DIR	Asymmetric Pause Direction	R/W	0h	
		Bit[11:10] Capability			
		00 No Pause			
		01 Symmetric PAUSE			
		10 Asymmetric PAUSE toward Link			
		Partner			
		Both Symmetric PAUSE and			
		Asymmetric PAUSE toward			
1.0	DATIGE	local device	D /XX		DI DAIIDEG
10	PAUSE	Pause Operation for Full Duplex	R/W	pin	PI_PAUREC
		Value on PAUREC will be stored in this			
	T. 4	bit during power on reset.	D.O.	01	
9	T4	Technology Ability for 100Base-T4	RO	0h	
_		Defaults to 0.			
8	TX_FDX	100Base-TX Full Duplex	R/W	1h	Used by Auto
		1: Capable of 100M Full duplex			Negotiation
		operation			Block
		0: Not capable of 100M Full duplex			
_	m • • • • •	operation	.		
7	TX_HDX	100Base-TX Half Duplex	R/W	1h	Used By Auto
		1: Capable of 100M operation			Negotiation
		0: Not capable of 100M operation			Block
6	10_FDX	10BASE-T Full Duplex	R/W	1h	Used By Auto
		1: Capable of 10M Full Duplex operation			Negotiation
		0: Not capable of 10M full duplex			Block
		operation			
5	10_HDX	10Base-T Half Duplex	R/W	1h	Used By Auto
		1: Capable of 10M operation			Negotiation
		0: Not capable of 10M operation			Block

Bit #	Name	Description	Type	Default	Interface
					<i>Note:</i> that bit 8:5
					should be
					combined with
					REC100,
					RECFUL pin
					input to
					determine the
					finalized speed
					and duplex
					mode.
4:0	Selector	These 5 bits are hardwired to 00001b,	RO	01h	Used by Auto
	Field	indicating that the PHY841F supports			Negotiation
		IEEE 802.3 CSMA/CD.			Block.

4.3.6 Auto Negotiation Link Partner Ability (Register 5h)

Bit #	Name	Description	Type	Default	Interface
15	NPAGE	Next Page	RO	0h	Updated by Auto
		1: Capable of next page function			Negotiation
1.4	A CIT	0: Not capable of next page function	D.O.	01	Block
14	ACK	Acknowledge	RO	0h	Updated by Auto
		1: Link Partner acknowledges reception			Negotiation
		of the ability data word			Block
12	DE	0: Not acknowledged	D.O.	01	TT 1 4 11 A 4
13	RF	Remote Fault	RO	0h	Updated by Auto
		1: Remote Fault has been detected			Negotiation
		0: No remote fault has been detected		0.1	Block
12	Reserved		RO	0h	
11	LP_DIR	Link Partner Asymmetric Pause	RO	0h	Updated by Auto
		Direction.			Negotiation
					Block
10	LP_PAU	Link Partner Pause Capability	RO	0h	Updated by Auto
		Value on PAUREC will be stored in this			Negotiation
		bit during power on reset.			Block
9	LP_T4	Link Partner Technology Ability for	RO	0h	Updated by Auto
		100Base-T4			Negotiation
		Defaults to 0.			Block
8	LP FDX		RO	1h	Used by Auto
	_	1: Capable of 100M Full duplex			Negotiation
		operation			Block
		0: Not capable of 100M Full duplex			
		operation			
7	LP HDX	100Base-TX Half Duplex	RO	1h	Used By Auto
	_				Negotiation
		1: Capable of 100M operation			Negotiation

Bit #	Name	Description	Type	Default	Interface
		0: Not capable of 100M operation			Block
6	LP_F10	10BASE-T Full Duplex	RO		Used By Auto
		1: Capable of 10M Full Duplex operation			Negotiation
		0: Not capable of 10M full duplex			Block
		operation			
5	LP_H10	10Base-T Half Duplex	RO		Used By Auto
		1: Capable of 10M operation			Negotiation
		0: Not capable of 10M operation			Block
4:0	Selector	Encoding Definitions.	RO	01h	Updated By Auto
	Field				Negotiation
					Block.

4.3.7 Auto Negotiation Expansion Register (Register 6h)

Bit #		Description	Type	Default	Interface
15:5	Reserved		RO	000h	000h
4	PFAULT	Parallel Detection Fault	RO,	0h	Updated by Auto
		1: Fault has been detected	LH		Negotiation
		0: No Fault Detect			Block
3	LPNPABL	Link Partner Next Page Able	RO	0h	Updated By Auto
	E	1: Link Partner is next page capable			Negotiation
		0: Link Partner is not next page capable			Block
2	NPABLE	Next Page Able	RO	0h	
		0: Next page Disable			
		1: Next page Enable.			
1	PGRCV	Page Received	RO,	0h	Updated By
		1: A new page has been received	LH		Auto
		0: No new page has been received			Negotiation
					Block
0	LPANABL	Link Partner Auto Negotiation Able	RO	0h	Updated By
	Е	1: Link Partner is auto negotiable			Auto
		0: Link Partner is not auto negotiable			Negotiation
					Block

4.3.8 Register Reserved (Register 7h-Fh)

Bit #	Name	Description	Type	Default	Interface
15:0	Reserved				

4.3.9 Generic PHY Configuration Register (Register 10h)

Note: PHY Control/Configuration Registers start from address 16 to 21.

Bit # Name Description Type Default Interface	Bit #
---	-------

Bit #	Name	Description	Type	Default	Interface
15:5	Reserved		RO	1h	
14		Cross Over Auto Detect Enable. 0: Disable	R/W	pin	PI_XOVEN
		1: Enable			
3:1	Reserved		RO	0h	
0		Disable Power Management Feature. 0: Enable. Enable Medium Detect Function. 1: Disable. Medium_On is high all the time.	R/W	0h	REC_DISPMG

4.3.10 PHY 10M Module Configuration Register (Register 11h)

Bit #	Name	Description	Type	Default	Interface
15:6	Reserved		RO	0h	
5		Reduce 10M Driver to 62mA. 1: 62mA 0: Normal	R/W		Will be On when DISPMG is set to low during power on reset.
4	APDIS	Auto Polarity Disable 1: Auto Polarity Function Disabled 0: Normal	R/W		REC_APOLDIS TP Module Polarity pin.
3		Enable Receive Jabber Monitor. 0: Disable 1: Enable	R/W		REC_ENRJAB Control two blocks: 1.Receive Jabber (CRS keeps high all the time) 2.CRS Low less than 2 3 us
2		Disable Transmit Jabber 1: Disable Transmit Jabber Function 0: Enable Transmit Jabber Function	R/W	0h	REC_DISTJAB
1		Normal Threshold 0: Lower 10BASE-T Receive threshold 1: Normal 10BASE-T Receive threshold	R/W	0h	REC_NTH
0		Force 10M Receive Good Link 1: Force Good Link 0: Normal Operation	R/W	0h	REC_FGDLINK

4.3.11 PHY 100M Module Control Register (Register 12h)

Bit #	Name	Description	Type	Default	Interface
15:8	Reserved		RO	0h	
7	SELFX	Fiber Select	R/W	pin	~PI_SELTP
		1: Fiber Mode			
		0: TP Mode			
6:5	Reserved		R/W	1h	
4	DISSCR	Disable Scrambler	R/W	pin	When
		1: Disable Scrambler			programmed to
		0: Enable Scrambler			fiber mode, set to
		When set to fiber mode, this bit will be			1 automatically
		forced to 1 automatically. Write 0 to this			
		bit in Fiber Mode has no effect.			
3	ENFEFI	Enable FEFI	R/W	pin	~DISFEFI
		1: Enable FEFI			OR ed result of
		0: Disable FEFI			ENFEFI and
					FTPREN
2	Reserved		RO	0h	
1	Reserved		R/W	1h	
0	Reserved		R/W	0h	

4.3.12 LED Configuration Register (Register 13h)

Bit #	Name	Description	Type	Default	Interface
15:14	Reserved		RO	0h	
13:12	BLINK_T	10/100M Blink Timer Select.	RO	00	REC_BLINK_T
	M	Value 10M Blink Time 100M Blink			M
		Time			
		00 100 ms 100 ms			
		01 200 ms 100 ms			
		10 400 ms 100 ms			
		11 100 ms 50 ms			
11:8	LNKCTRL	Link/Act LED Control.	RO	1010	REC_LNKLED_
		0000: Collision			CTRL
		0001: All Errors			
		0010: Duplex			
		0011: Duplex/Collision			
		0100: Speed			
		0101: Link			
		0110: Transmit Activity			
		0111: Receive Activity			
		1000: TX/RX Activity			
		1001: Link/Receive Activity			

Bit #	Name	Description	Type	Default	Interface
		1010: Link and TX/RX Activity			
		1011: 100M False Carrier Error/10M			
		Receive Jabber			
		1100: 100M Error End of Stream/10M			
		Transmit Jabber			
		1101: 100M Symbol Error			
		1110: Distance (See LED Description for			
		more detail)			
		1111: Cable Broken Distance			
7:4	DUPCTRL	Duplex LED Control.	RO	0011	REC_DUPLED_
		0000: Collision			CTRL
		0001: All Errors			
		0010: Duplex			
		0011: Duplex/Collision			
		0100: Speed			
		0101: Link			
		0110: Transmit Activity			
		0111: Receive Activity			
		1000: TX/RX Activity			
		1001: Link/Receive Activity			
		1010: Link and TX/RX Activity			
		1011: 100M False Carrier Error/10M			
		Receive Jabber			
		1100: 100M Error End of Stream/10M			
		Transmit Jabber			
		1101: 100M Symbol Error			
		1110: Distance (See LED Description for			
		more detail)			
2.0	CDDCTDI	1111: Cable Broken Distance	DO	0100	DEC CDDI ED
3:0	SPDCTRL	Speed LED Control.	RO	0100	REC_SPDLED_
		0000: Collision			CTRL
		0001: All Errors			
		0010: Duplex			
		0011: Duplex/Collision			
		0100: Speed			
		0101: Link			
		0110: Transmit Activity			
		0111: Receive Activity			
		1000: TX/RX Activity			
		1001: Link/Receive Activity			
		1010: Link and TX/RX Activity 1011: 100M False Carrier Error/10M			
		Receive Jabber			
		1100: 100M Error End of Stream/10M			
		1100. 100W Ellot Ella of Stream/10M			

Bit #	Name	Description	Type	Default	Interface
		Transmit Jabber			
		1101: 100M Symbol Error			
		1110: Distance (See LED Description for			
		more detail)			
		1111: Cable Broken Distance			

4.3.13 Interrupt Enable Register (Register 14h)

Bit #	Name	Description	Type	Default	Interface
15:10	Reserved		RO	00h	
9	XOVCHG	Cross Over mode Changed Interrupt	R/W	1h	
		Enable			
		1: Interrupt Enable			
		0: Interrupt Disable			
8	SPDCHG	Speed Changed Interrupt Enable	R/W	1h	
		1: Interrupt Enable			
		0: Interrupt Disable	-	_	
7	DUPCHG	Duplex Changed Interrupt Enable	R/W	1h	
		1: Interrupt Enable			
	D CD CITC	0: Interrupt Disable		41	
6	PGRCHG	Page Received Interrupt Enable	R/W	1h	
		1: Interrupt Enable			
	LAWGUG	0: Interrupt Disable	D /XX	11	
5	LNKCHG	Link Status Changed Interrupt Enable	R/W	1h	
		1: Interrupt Enable			
4	CVACEDD	0: Interrupt Disable	D/XI	11	
4	SYMERK	Symbol Error Interrupt Enable	R/W	1h	
		1: Interrupt Enable			
3	FCAR	0: Interrupt Disable	R/W	1h	
3	ГСАК	False Carrier Interrupt Enable 1: Interrupt Enable	IX/ VV	111	
		0: Interrupt Disable			
2	TIARINT	Transmit Jabber Interrupt Enable	R/W	1h	
2	IJADINI	1: Interrupt Enable	IV VV	111	
		0: Interrupt Disable			
1		Receive Jabber Interrupt Enable	R/W	1h	
1	K37 KBITVI	1: Interrupt Enable	10/ 11	111	
		0: Interrupt Disable			
0	ESDERR	Error End of Stream Enable	R/W	1h	
	Lobbind	1: Interrupt Enable	14 11		
		0: Interrupt Disable			
		o. Interrupt Disacre			

4.3.14 PHY Generic Status Register (Register 16h)

Note: PHY Status Registers start from 22 to 28 (29 to 30 reserves for further use)

Bit #	Name	Description		Default	
15:14	Reserved		RO	00h	
13	CBBRK	4.3.4 PHY Identifier Register (Register	RO	0h	
		3h)			
		0: Connection properly			
		1: Broken			
12:11	BRKDIST	Cable Broken Distance	RO	0h	
	1:0]	00: 0 − 60m			
		01: 60– 90m			
		10: 90 – 130m			
		11: 130 – 170m			
10	MD	Medium Detect. Real Time Status for	RO	0h	
		Medium Detect Signal			
		0: Medium Detect Fail			
		1: Medium Detect Pass			
9	FXEN	Fiber Enable. Only Changed when PHY	RO	pin	PI_SELFX
		Reset			
		0: TX			
		1: FX mode			
		OR'ed result of PI SELFX and 17.9			
		(SELFX)			
8	XOVER	Cross Over status.	RO	0h	
		0: MDI mode			
		1: MDIX mode			
7:0	CBLEN	Cable Length. Only valid for 100M	RO	00h	
		MSB is IC0			
		8'h1C: 40 meters			
		8'h25: 60 meters			
		8'h2E: 80 meters			
		8'h3b: 100 meters			
		8'hbc: 120 meters			
		8'hd2: 140 meters			

4.3.15 PHY Specific Status Register (Register 17h)

Ro
time. 11 JAB-RX Real Time 10M Receive Jabber Status 1: Jabber 0: No jabber 10 JAB_TX Real Time 10M Transmit Jabber Status 1: Jabber 0: No Jabber 9 POLAR Polarity. Only available in 10M 0: Normal Polarity 1: Polarity Reversed 8 PAUOUT Pause Out capability. Disabled when Half Duplex. 0: Lack of Pause Out capability
11 JAB-RX Real Time 10M Receive Jabber Status 1: Jabber 0: No jabber 10 JAB_TX Real Time 10M Transmit Jabber Status 1: Jabber 0: No Jabber 9 POLAR Polarity. Only available in 10M 0: Normal Polarity 1: Polarity Reversed 8 PAUOUT Pause Out capability. Disabled when Half Duplex. 0: Lack of Pause Out capability
1: Jabber 0: No jabber 10 JAB_TX Real Time 10M Transmit Jabber Status 1: Jabber 0: No Jabber 9 POLAR Polarity. Only available in 10M 0: Normal Polarity 1: Polarity Reversed 8 PAUOUT Pause Out capability. Disabled when Half Duplex. 0: Lack of Pause Out capability
10 JAB_TX Real Time 10M Transmit Jabber Status 1: Jabber 0: No Jabber 9 POLAR Polarity. Only available in 10M 0: Normal Polarity 1: Polarity Reversed 8 PAUOUT Pause Out capability. Disabled when Half Duplex. 0: Lack of Pause Out capability
1: Jabber 0: No Jabber POLAR Polarity. Only available in 10M 0: Normal Polarity 1: Polarity Reversed PAUOUT Pause Out capability. Disabled when Half Duplex. 0: Lack of Pause Out capability
9 POLAR Polarity. RO 0h Only available in 10M 0: Normal Polarity 1: Polarity Reversed 8 PAUOUT Pause Out capability. Disabled when Half Duplex. 0: Lack of Pause Out capability
9 POLAR Polarity. Only available in 10M 0: Normal Polarity 1: Polarity Reversed 8 PAUOUT Pause Out capability. Disabled when Half Duplex. 0: Lack of Pause Out capability
Only available in 10M 0: Normal Polarity 1: Polarity Reversed 8 PAUOUT Pause Out capability. Disabled when Half RO Duplex. 0: Lack of Pause Out capability
0: Normal Polarity 1: Polarity Reversed 8 PAUOUT Pause Out capability. Disabled when Half RO Duplex. 0: Lack of Pause Out capability
1: Polarity Reversed 8 PAUOUT Pause Out capability. Disabled when Half RO 0h Duplex. 0: Lack of Pause Out capability
8 PAUOUT Pause Out capability. Disabled when Half RO 0h Duplex. 0: Lack of Pause Out capability
Duplex. 0: Lack of Pause Out capability
0: Lack of Pause Out capability
1: Has Pause Out capability
7 PAUIN Pause In capability. Disabled when Half RO 0h
Duplex.
0: Lack of Pause In capability
1: Has Pause In capability
6 DUPLEX Operating Duplex RO 1h
1: Full Duplex
0: Half Duplex
5 SPEED Operating Speed RO 1h
1: 100Mb/s
0: 10Mb/s
4 LINK Real Time Link Status RO 0h
1: Link Up
0: Link Down
3 RECPAU Pause Recommend Value. Only Changed RO pin PI_PAUREC
when PHY Reset. This bit is disabled
automatically when RECDUP is 0.
0: Pause Disable
1: Pause Enable
2 RECDUP Duplex Recommended Value. Only RO pin PI_DUPFUL
Changed when PHY Reset
1: Full Duplex
0: Half Duplex

Bit #	Name	Description	Type	Default	Interface
		when PHY Reset			
		1: 100M			
		0: 10M			
0	RECANEN	Recommended Auto Negotiation Value.	RO	pin	PI_RECANEN
		Only Changed when PHY Reset			

4.3.16 PHY Recommend Value Status Register (Register 18h)

Bit #	Name	Description	Type	Default	Interface
15	PWEDN	Power Down Status	RO	pin	
14	RECAN	Auto Negotiation Recommend Value	RO	pin	
13	SELFX	Fiber Select Recommend Value	RO	pin	
12	REC100	Speed Recommend Value	RO	pin	
		0: 10M			
		1: 100M			
11	RECFUL	Duplex Recommend Value.	RO	pin	
		0: Half Duplex			
		1: Full Duplex			
10	PAUREC	Pause Capability Recommend Value	RO	pin	
		1: Pause Enable			
		0: Pause Disable			
9	DISFEFI	Far End Fault Disable.	RO	Pin	
		0: Enable			
		1: Disable			
8	XOVEN	Cross Over Capability Recommend Value.	RO	Pin	
		0: Disable			
		1: Enable			
7	XOVER	Cross Over Status.	RO	0h	
		0: Non-Cross Over			
		1: Cross Over			
6	RMII_SMII	RMII_SMII Interface	RO	Pin	
		1: RMII or SMII Interface used			
	n=n= : ==	0: Non RMII_SMII Interface	D 0	·	
5		Repeater Mode Recommend Value	RO	Pin	
	R	1: Repeater			
4:0	PHYA	0: NIC/SW PHY Address	RO	0h	
4.0	гпіА	I III AUUFESS	ΚU	VII	

4.3.17 Interrupt Status Register (Register 19h)

Bit #	Name	Description	Type	Default	Interface
15:10	Reserved		COR	00h	
9	XOVCHG	Cross Over mode Changed	COR	0h	Updated By
		1: Cross Over mode Changed			PMD Block
		0: Cross Over mode Not Changed			
28	SPDCHG	1	COR	0h	Updated By Auto
		1: Speed Changed			Negotiation
		0: Speed Not Changed			Block
7	DUPCHG	Duplex Changed	COR	0h	Updated By Auto
		1: Duplex Changed			Negotiation
		0: Duplex not changed			Block
6	PGRCHG	Page Received	COR	0h	Updated By Auto
		1: Page Received			Negotiation
		0: Page not received			Block
5	LNKCHG	Link Status Changed	COR	0h	Updated By Auto
		1:Link Status Changed			Negotiation
		0: Link Status not Changed			Block
4	SYMERR	Symbol Error	COR	0h	Updated By
		1: Symbol Error			100M Block
		0: No symbol Error			
3	FCAR	False Carrier	COR	0h	Updated By
		1: False Carrier			100M Block
		0: No false carrier			
		<i>Note:</i> high whenever Link is Failed.			
2	TJABINT	Transmit Jabber	COR	0h	Updated By 10M
		1: Jabber			Block
		0: No Jabber			
1	RJABINT	Receive Jabber	COR	0h	Updated By 10M
		1: Jabber			Block
		0: No Jabber			
0	ESDERR	Error End of Stream	COR	0h	Updated By
		1: ESD Error			100M Block
		0: No ESD Error			

4.3.18 Receive Error Counter Register (Register 1Dh)

Bit #	Name	Description	Type	Default	Interface
15:0	ERB[15:0]	Error Counter. Includes	RO	0000h	
		1.100M False Carrier			
		2.100M Symbol Error			
		3.10M Transmit Jabber			
		4.10M Receive Jabber			
		5.Error Start of Stream			
		6.Error End of Stream			

4.3.19 Chip ID Register (Register 1Fh)

Bit(s)	Name	Description		Default	Interface
15:0	CHIPID[15:	ADMtek CHIP ID	RO	8818	
	01				

4.3.20 Per port Interrupt and Revision ID Register (Register 1Eh)

Bit #	Name	Description	Type	Default	Interface
15:8	INTP[7:0]	Per Port Interrupt Status. Only available	RO	8'h00	
		in Port 0.			
		1 - Interrupt asserted in corresponding port			
		0 - Interrupt not asserted in corresponding			
		port			
7:0	Reserved		RO	8'h00	

Chapter 5 Electrical Specification

5.1 DC Characterization

5.1.1 Absolute Maximum Rating

Symbol	Parameter	Rating	Units
V_{CC33}	3.3V Power Supply	3.0 to 3.6	V
V_{CC18}	1.8V Power Supply	1.62 to 1.98	V
V_{IN}	Input Voltage	-0.3 to $V_{CC33} + 0.3$	V
Vout	Output Voltage	-0.3 to $Vcc_{33} + 0.3$	V
TSTG	Storage Temperature	-55 to 155	°C
PD	Power Dissipation	1.5	W
ESD	ESD Rating	2000	V

Table 5-1 Electrical Absolute Maximum Rating

5.1.2 Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Units
Vcc_{33}	Power Supply	3.135	3.3	3.465	V
Vin	Input Voltage	0	-	Vcc	V
Tj	Junction Operating Temperature	0	25	115	°C

Table 5-2 Recommended Operating Conditions

5.1.3 DC Electrical Characteristics for 3.3V Operation

(Under Vcc= $3.0V \sim 3.6V$, Tj= $0 \circ C \sim 115 \circ C$)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
VIL	Input Low Voltage	CMOS			0.3 * Vcc	V
VIH	Input High Voltage	CMOS	0.7 * Vcc			V
VOL	Output Low Voltage	CMOS			0.4	V
VOH	Output High Voltage	CMOS	2.3			V
RI	Input Pull_up/down	VIL=0V or		75		ΚΩ
	Resistance	VIH = Vcc				

Table 5-3 DC Electrical Characteristics for 3.3V Operation

5.2 AC Characterization

5.2.1 XI/OSCI (Crystal/Oscillator) Timing

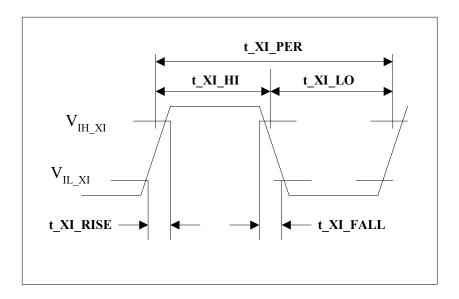


Figure 5-1 Crystal/Oscillator Timing

Symbol	Description	MIN	TYP	MAX	UNIT
t_XI_PER	XI/OSCI Clock Period	40.0 -	40.0	40.0 +	ns
		50ppm		50pp	
				m	
T_XI_HI	XI/OSCI Clock High	14	20.0		ns
T_XI_LO	XI/OSCI Clock Low	14	20.0		ns
T_XI_RISE	XI/OSCI Clock Rise Time, V _{IL} (max) to V _{IH}			4	ns
	(min)				
T_XI_FALL	XI/OSCI Clock Fall Time, V _{IH} (min) to V _{IL}			4	ns
	(max)				

Table 5-4 Crystal/Oscillator Timing

5.3 RMII Timing

5.3.1 REFCLK Input Timing (When REFCLK_SEL is set to 1)

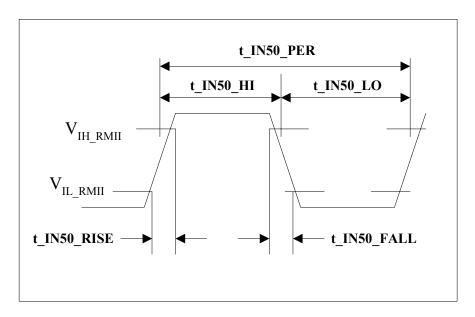


Figure 5-2 REFCLK Input Timing

Symbol	Description	MIN	TYP	MAX	UNIT
t_IN50_PER	REFCLK Clock Period	40.0 -	40.0	40.0 +	ns
		50ppm		50pp	
				m	
t_IN50_HI	REFCLK Clock High	14	20.0		ns
t_IN50_LO	REFCLK Clock Low	14	20.0		ns
t_IN50_RISE	REFCLK Clock Rise Time, V _{IL} (max) to V _{IH}			2	ns
	(min)				
t_IN50_FALL	REFCLK Clock Fall Time, V _{IH} (min) to V _{IL}			2	ns
·	(max)				

Table 5-5 REFCLK Input Timing

5.3.2 REFCLK Output Timing (When REFCLK_SEL is set to 0)

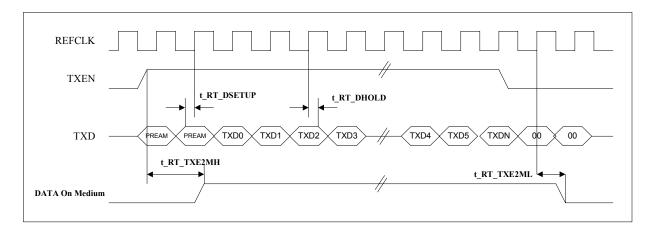



Figure 5-3 REFCLK Output Timing

Symbol	Description	MIN	TYP	MAX	UNIT
t_OUT50_PER	REFCLK Clock Period	40.0 -	40.0	40.0 +	ns
		50ppm		50pp	
				m	
t_OUT50_HI	REFCLK Clock High	14	20.0	26	ns
t_OUT50_LO	REFCLK Clock Low	14	20.0	26	ns
t_OUT50_RISE	REFCLK Clock Rise Time , V_{IL} (max) to V_{IH}			2	ns
	(min)				
t_OUT50_FALL	REFCLK Clock Fall Time, V _{IH} (min) to V _{IL}			2	ns
	(max)				
t_OUT50_JIT	REFCLK Clock Jittering (p-p)		0.15		ns

Table 5-6 REFCLK Output Timing

5.3.3 RMII Transmit Timing

Figure 5-4 RMII Transmit Timing

Symbol	Description	MIN	TYP	MAX	UNIT
t_RT_DSETUP	TXD to REFCLK Rising Setup Time	2			ns
t_RT_DHOLD	TXD to REFCLK Rising Hold Time	2			ns
t_RT_TXE2MH ₁	TXEN asserts to data transmit to medium			235	ns
00					
t_RT_TXE2MH ₁	TXEN asserts to data transmit to medium			1550	ns
0					
t_RT_TXE2ML ₁₀	TXEN de-asserts to finish transmitting			260	ns
0					
t_RT_TXE2ML ₁₀	TXEN de-asserts to finish transmitting			1250	ns

Table 5-7 RMII Transmit Timing

5.3.4 RMII Receive Timing

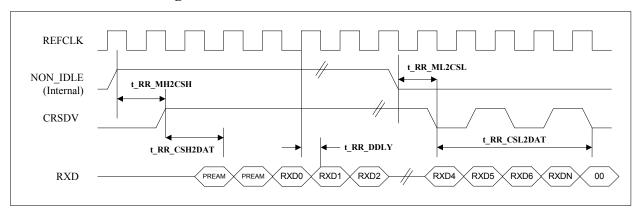


Figure 5-5 RMII Receive Timing

Symbol	Description	MIN	TYP	MAX	UNIT
t_RR_MH2CSH ₁	Signal Detected on Medium to CRSDV High			265	ns
00					
t_RR_MH2CSH ₁	Signal Detected on Medium to CRSDV High			1000	ns
0					
t_RR_ML2CSL ₁₀	IDLE Detected on Medium to CRSDV low			260	ns
0					
t_RR_ML2CSL ₁₀	IDLE Detected on Medium to CRSDV low			570	ns
t_RR_CSH2DAT	CRSDV High to Receive Data on RXD			160	ns
100					
t_RR_CSH2DAT	CRSDV High to Receive Data on RXD			1600	ns
10					
t_RR_CSL2DAT	CRSDV Toggle to End of Data Receiving		160		ns
100					
t_RR_CSL2DAT	CRSDV Toggle to End of Data Receiving		1600		ns
10					
t RR DDLY	REFCLK Rising to RXD/CRSDV Delay Time			5	ns

Table 5-8 RMII Receive Timing

5.4 SMII Clock Timing

5.4.1 REFCLK Input Timing (When REFCLK_SEL is set to 1) -

Also apply to TX_CLK

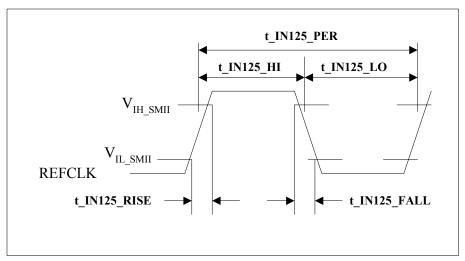


Figure 5-6 REFCLK Input Timing

Symbol	Description	MIN	TYP	MAX	UNIT
t_IN125_PER	REFCLK/TXCLK Clock Period	8.0 -	8.0	8.0 +	ns
		50ppm		50pp	
				m	
t_IN125_HI	REFCLK/TXCLK Clock High	2.8	4.0		ns
t_IN125_LO	REFCLK/TXCLK Clock Low	2.8	4.0		ns
t_IN125_RISE	REFCLK/TXCLK Clock Rise Time, V _{IL} (max)			2	ns
	to V _{IH} (min)				
t_IN125_FALL	REFCLK/TXCLK Clock Fall Time, V _{IH} (min)			2	ns
_	to V _{IL} (max)				

Table 5-9 REFCLK Input Timing

5.4.2 REFCLK Output Timing (When REFCLK_SEL is set to 1)

Also apply to RXCLK in SS_SMII Mode

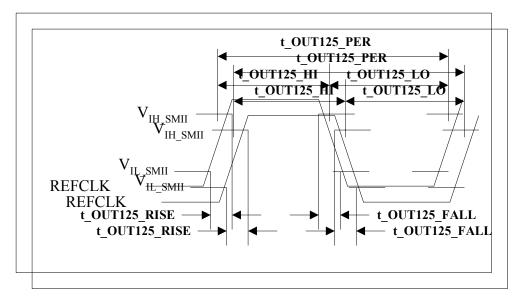


Figure 5-7 SMII/SS_SMII REFCLK Output Timing

Symbol	Description	MIN	TYP	MAX	UNIT
t_OUT125_PER	REFCLK Clock Period	8.0 -	8.0	8.0 +	ns
		50ppm		50pp	
				m	
t_OUT125_HI	REFCLK Clock High	2.4	4.0		ns
t_OUT125_LO	REFCLK Clock Low	2.4	4.0	26	ns
t_OUT125_RISE	REFCLK Clock Rise Time, V _{IL} (max) to V _{IH}			2	ns
	(min)				
t_OUT125_FAL	REFCLK Clock Fall Time, V _{IH} (min) to V _{IL}			2	ns
L	(max)				
t_OUT125_JIT	REFCLK Clock Jittering (p-p)		0.15		ns

Table 5-10 SMII/SS_SMII REFCLK Output Timing

5.4.3 SMII/SS_SMII Transmit Timing

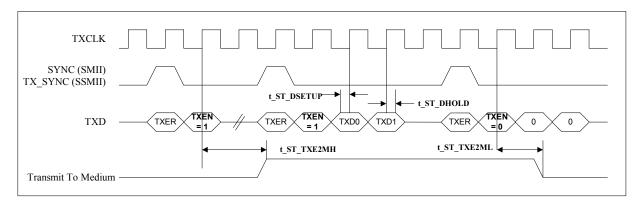


Figure 5-8 SMII/SS_SMII Transmit Timing

Symbol	Description	MIN	TYP	MAX	UNIT
t_ST_DSETUP	TXD to REFCLK Rising Setup Time	2			ns
t_ST_DHOLD	TXD to REFCLK Rising Hold Time	2			ns
t_ST_TXE2MH ₁₀	TXEN asserts to data transmit to medium			390	ns
0	(100M)				
t_ST_TXE2MH ₁₀	TXEN asserts to data transmit to medium			2340	ns
	(10M)				
t_ST_TXE2ML ₁₀	TXEN de-asserts to finish transmitting (100M)			430	ns
0					
t ST TXE2ML ₁₀	TXEN de-asserts to finish transmitting (10M)			3800	ns

Table 5-11 SMII/SS_SMII Transmit Timing

5.4.4 SMII/SS_SMII Receive Timing

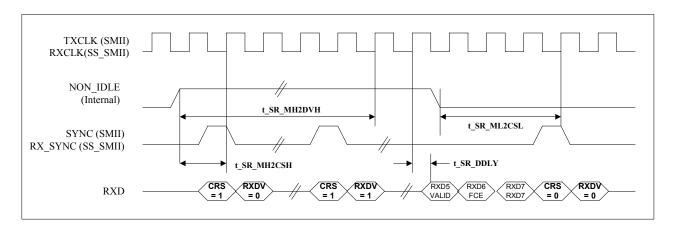


Figure 5-9 SMII/SS_SMII Receive Timing

Symbol	Description	MIN	TYP	MAX	UNIT
t_SR_MH2CSH ₁₀	Signal Detected on Medium to CRS High			430	ns
0	(100M)				
t_SR_MH2CSH ₁₀	Signal Detected on Medium to CRS High			680	ns
	(10M)				
t_SR_ML2CSL ₁₀	IDLE Detected on Medium to CRS low (100M)			420	ns
0					
t_SR_ML2CSL ₁₀	IDLE Detected on Medium to CRS low (10M)			240	ns
t_SR_MH2DVH ₁	Signal Detected on Medium to Receive Data			470	ns
00	Valid (100M)				
t SR MH2DVH ₁	Signal Detected on Medium to Receive Data			3840	ns
0	Valid (10M)				
t SR DDLY _{SMII}	TXCLK Rising to SYNC/RXD Delay Time			5	ns
	(SMII)				
t_SR_DDLY _{SS S}	RXCLK Rising to RX_SYNC/RXD Delay			5	ns
MII	Time (SS_SMII)				

Table 5-12 SMII/SS_SMII Receive Timing

5.5 Serial Management Interface (MDC/MDIO) Timing

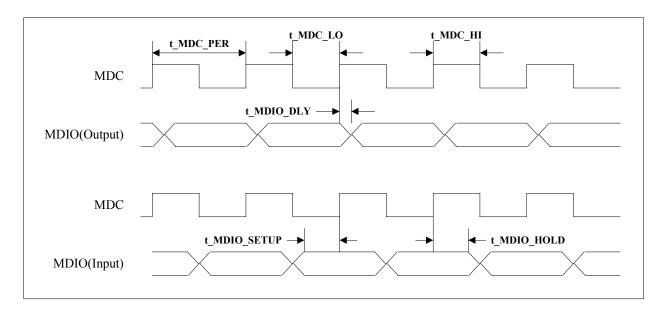
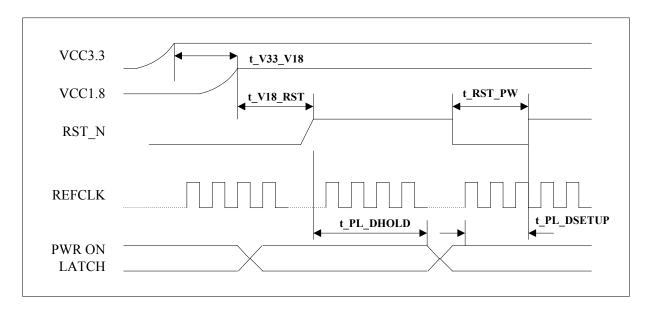


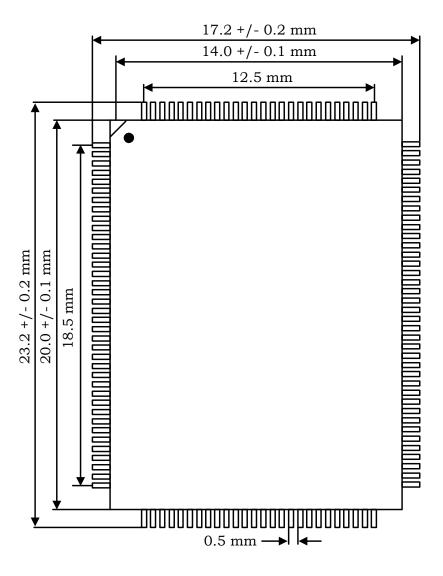
Figure 5-10 Serial Management Interface (MDC/MDIO) Timing

Symbol	Description	MIN	TYP	MAX	UNIT
t_MDC_PER	MDC Period	100			ns
t_MDC_HI	MDC High	40			ns
t_MDC_LO	MDC High	40			ns
t_MDIO_DLY	MDC to MDIO Delay Time			20	ns
t_MDIO_SETUP	MDIO Input to MDC Setup Time	10			ns
t_MDIO_HOLD	MDIO Input to MDC Hold Time	10			ns

Table 5-13 Serial Management Interface (MDC/MDIO) Timing

5.6 Power On Configuration Timing




Figure 5-11 Power On Configuration Timing

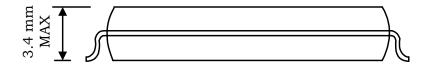

Symbol	Description	MIN	TYP	MAX	UNIT
t_V33_V18	3.3V Power Good to 1.8V Power Good	TBD			ms
t_V18_RST	Hardware Reset With Device Powered up	200			ms
t_RST_PW	Hardware Reset With Clock Running	800			ns
t_PL_DSETUP	Reset High to Configuration Setup Time	200			ns
t PL DHOLD	Reset High to Configuration Hold Time	0			ns

Table 5-14 Power On Configuration Timing

Model: XX Appendix

Chapter 6 Packaging

