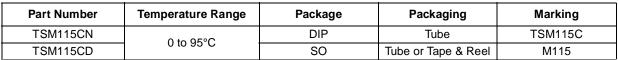


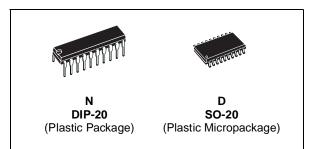
PRELIMINARY DATA

Over voltage and under voltage protection for 3.3V +5V and ±12V without external components

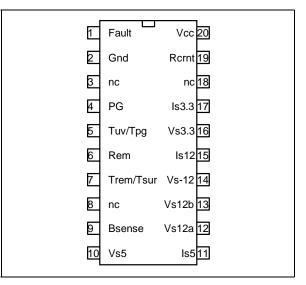
- Over current protection for 3.3V 5V and 12V with external components
- Under voltage blanking fonction
- Power good input/output
- Externally adjustable PG delay
- Fault output
- Remote output
- Externally adjustable remote delay
- 2kV ESD protection

DESCRIPTION


The TSM115 integrated circuit incorporates all sensing circuitry to protect from over and under voltage and over current a multiple output power supply $(3.3V, +5V \text{ and } \pm 12V)$.


TSM115 incorporates all the necessary functions for Housekeeping features which allow safe operation in all conditions, and very high system integration.

APPLICATION


PC SMPS Multiple Power Line Housekeeping IC (3.3V +5V ±12V)

ORDER CODE

PIN CONNECTIONS (top view)

1 Pin Description

Name	Pin #	Туре	Function
Fault	1	Open collector	Fault output. Output of the over voltage and under voltage comparators.
Gnd	2	Power supply	Signal ground and silicon substrate
PG	4	Open collector	Output of the Tpg comparator. This pin goes low upon an under voltage condition. Except for the delay set by the Tpg capacitor this pin always reflects the actual state of the under voltage sensing comparators output.
Tuv/Tpg	5	Timing capacitor	A capacitor from this pin to Gnd provides a delay between outputs rail volt- age within regulation and PG output going high. Capacitor discharges whenever Bsense low or Rem high or UVP is detected. This capacitor will also provide the under voltage blanking function when the voltage at this pin is larger than the Vref voltage. The under voltage function resume.
Rem	6	Control Input pin	Pulling this pin high will send the Fault pin high latching off the power sup- ply, reset the internal latch, discharge the start-up timing capacitors, Tuv and Tpg capacitors, allowing normal start up of the system. Pulling this pin low will send the Fault pin low, initiating a normal start up function.
Trem/Tsur	7	Timing capacitor	A capacitor from this pin to Gnd will delay the Fault signal when the Rem pin is used to shut down the power supply. The PG will signal a power failure warming immediately, but the Fault pin shut down of the power will be delayed. This capacitor will also provide the overcurrent blanking function (surge current).
Bsense	9	Control input pin	Non inverting input to the Bsense voltage sensing comparator. Pulling this pin lower than 2.5V will cause PG goes low and Tuv goes low.
Vs5	10	Analog input	Over voltage and under voltage detection for +5V rail
ls5	11	Analog Input	5V overcurrent control sense input.
Vs12a	12	Analog input	Over voltage and under voltage detection for +12V rail
Vs12b	13	Analog input	Over voltage and under voltage detection for +12V rail
Vs-12	14	Analog input	Over voltage and under voltage detection for -12V rail.
ls12	15	Analog Input	12V overcurrent control sense input.
Vs3.3	16	Analog input	Over voltage and under voltage detection for 3.3V rail.
ls3.3	17	Analog Input	3.3V overcurrent control sense input.
Rcrnt	19	Analog input	A resistor from this pin to Gnd will provide the internal constant current.
Vcc	20	Power supply	Supply input voltage

ABSOLUTE MAXIMUM RATINGS

Symbol	DC Supply Voltage	Value	Unit
Vcc	DC Supply Voltage ¹	-0.3 to 18	V
Vpmax	Terminal voltage Vs3.3, Is3.3, Vs12, Is12, Vs5, Is5	-0.3 to 18	V
Vnmax	Terminal voltage Vs-12	-15 to 5	V
VDBTT	VTpg/Tuv, VTrem/Tsur input voltage	-0.3 to 3.3V	V
VTER	Other terminals	-0.3 to Vcc	V
PT	Power dissipation	1	W
Tstg	Storage temperature	-55 to 150	°C
Tj	Junction temperature	150	°C
ESD	Electrostatic Discharge	2	kV

1) All voltage values, except differential voltage are with respect to network ground terminal.

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
Vcc	DC Supply Conditions	3 to 15	V
Toper	Temperature range	0 to 95	°C

2 Electrical Characteristics

Tamb = 25°C, Vcc=5V, Vs3.3=3.3V, Vs5=5V, Vs12= 12V, Vs-12=-12V, Rem=Low, Rcrnt=12k\Omega

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
Total Curre	ent Consumption	l				
lcc	Total Supply Current				1	mA
lccstdby	Total Supply Current in Stand-by Condi- tions	Rem=high Vs3.3=0V, Vs5=0V Vs12=0V, Vs-12=0V			1	mA
Vccmin	Min operating Vcc	Tmin < Tamb < Tmax			3	V
	ge and Under Voltage Protection				<u> </u>	
Vov12	Over Voltage Sense 12V		13.6	14	14.4	V
Vuv12	Under Voltage Sense 12V		8.85	9.12	9.39	V
lin12b	Input current Voltage sense 12V		50	100	200	μA
Vov5	Over Voltage Sense 5V		6.01	6.20	6.39	ν γ
Vuv5	Under Voltage Sense 5V		4.00	4.12	4.24	V
lin5	Input current Voltage Sense 5V		50	100	200	μA
Dis5	Disable Voltage Sense 5V		7	7.5	8	V
Vov3.3	Over Voltage Sense 3.3V		3.88	4.00	4.12	V
Vuv3.3	Under Voltage Sense 3.3V		2.52	2.60	2.68	V
lin3.3	Input current Voltage Sense 3.3V		25	50	100	μA
Vov-12	Over Voltage Sense -12V		-15.49	-15.04	-14.59	V
Vuv-12	Under Voltage Sense -12V		-9.99	-9.70	-9.41	V
lin-12	Input current Voltage sense -12V		-200	-100	-50	μA
Dis-12	Disable Voltage Sense -12V			3.3		V
Internal de	-	1				
Tdelay	Internal time		30	37	45	μs
Over curre	nt Protection			•		
ls3.3	Current source		46	50	54	μA
Vicm3.3	Input common mode		0.7		Vov3.3	V
Vio3.3	Input offset voltage			2	3	mV
ls5	Current source		46	50	54	μA
Vicm5	Input common mode		0.7		Vov5	V
Vio5	Input offset voltage			2	3	mV
ls12	Current source		46	50	54	μA
Vicm12a	Input common mode		0.7		Vov12	V
Vio12a	Input offset voltage			2	3	mV
Vicm12b	Input common mode		0.7		Vov12	V
Vio12b	Input offset voltage			2	3	mV
lin12a	Input current			10		μA
Bsense						
Thbs	Bsense voltage threshold		1.218		1.282	V
Ilbs	Bsense current leakage	Bsense=1V		0	1	μA
lobs	Current source	Bsense=1.5V	90	100	110	μA
DlobsT	Current source drift in temperature	Tmin < Tamb < Tmax		5		μA
Vbsoh	Clamp voltage	loBsense=1µA	2.00	2.15	2.30	V
Iclbs	Clamping current	Bsense > 2.5V Tmin < Tamb < Tmax	3	3.6	5	mA
Vinbs	Input voltage		-0.3		2.5	V
Vinbs	Input voltage		-0.3		2.5	V

Symbol	Parameter	Parameter Test Condition		Тур	Max	Unit
Rem						
THrm	High threshold	From Low to high	1.87	1.93	1.99	V
TLrm	Low threshold	From high to low	1.0	1.25	1.4	V
Power Goo	d (PG)			•		
lpgol	Sink current	VPg=0.4V	10			mA
Vpgol	Low output voltage	lpg=10mA			0.4	V
Tpgr	Rise time PG	Rpg=1K			500	ns
Under Volta	age Blanking (Tuv) and Power Good (T	pg) times				
lotuvtpg	Current output source	Vtuvtpg = 0V	4.5	5	5.5	μA
THtuv	High threshold blanking	From low to high voltage	0.287	0.312	0.337	V
TLtuv	Low threshold blanking	From high to low voltage		0.25		V
THtpg	High threshold power good	From low to high voltage	1.218	1.25	1.282	V
TLtpg	Low threshold power good	From high to low voltage	0.9	1	1.1	V
ldtuvtpg	Current discharge of TuvTpg		2	5		mA
Vtuvtpgol	Low output voltage	lotutpg = 1mA			0.2	V
Vtuvtpgoh	Clamp voltage		2.1	2.3	2.5	V
VinTuvTpg	Input voltage		-0.3		2.3	V
Dlotuvtpg	Current source drift in temperature	Tmin < Tamb < Tmax			1	μA
Remote (Tr	em) and Surge current blanking (Tsur)	times				
lotrm	TRem current source	Vtrmtsur = 0V	90	100	110	μA
lotsur	Tsur current source	Vtrmtsur = 0V	9	10	11	μA
THtrm	High thresold voltage TRem	From low to high	1.218	1.25	1.282	V
TLtrm	Low thresold voltage TRem	From high to low	0.9	1	1.1	V
Idtrmtsur	Current discharge of TRemTsur		2	5		mA
Vtrmtsurol	Low output voltage	lotmtsur = 1mA			0.2	V
Vtrmtsuroh	Clamp voltage		2.1	2.3	2.5	V
Vintrmtsur	Input voltage		-0.3		2.3	V
Dlotrm	Current source drift in temperature	Tmin < Tamb < Tmax			5	μA
Dlotsur	Current source drift in temperature	Tmin < Tamb < Tmax			500	nA
Fault						
IfItol	IFault sink current	VFault=0.4V	10			mA
Vfltol	Low output voltage	IFault=10mA			0.4	V
THVcc	High threshold voltage, Vcc low to high	Rem low, all lines between			2.95	V
TLVcc	Low threshold voltage, Vcc high to low	UV and OV.			2.65	V
HystVcc	Vcc hysteresis : THVcc-TLVcc		TBD	300	TBD	mV
Rcrnt	•					
VRcrn	Output voltage		1.20	1.25	1.30	V

Fig. 1: Application Schematic

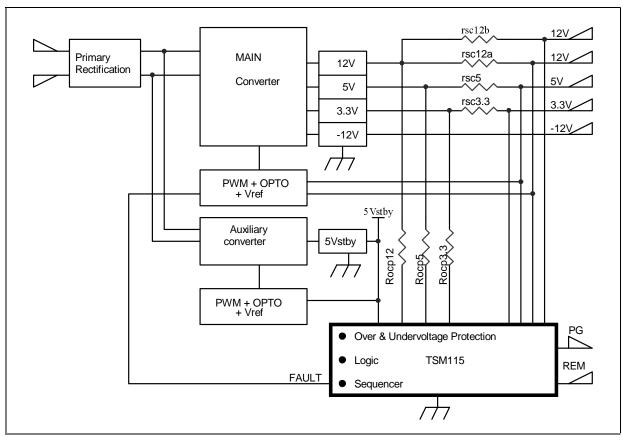
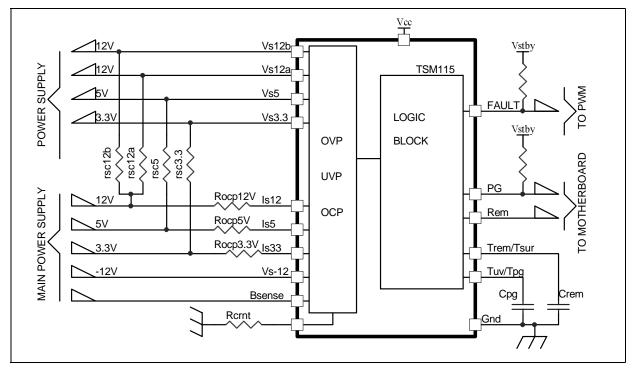
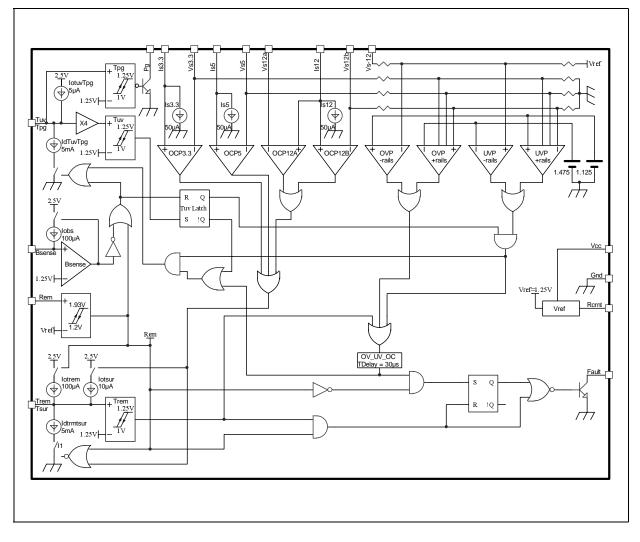
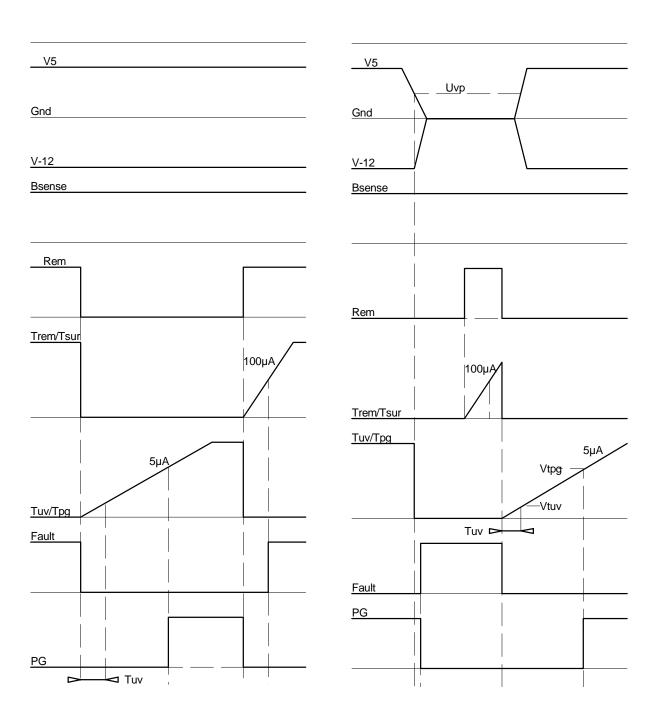
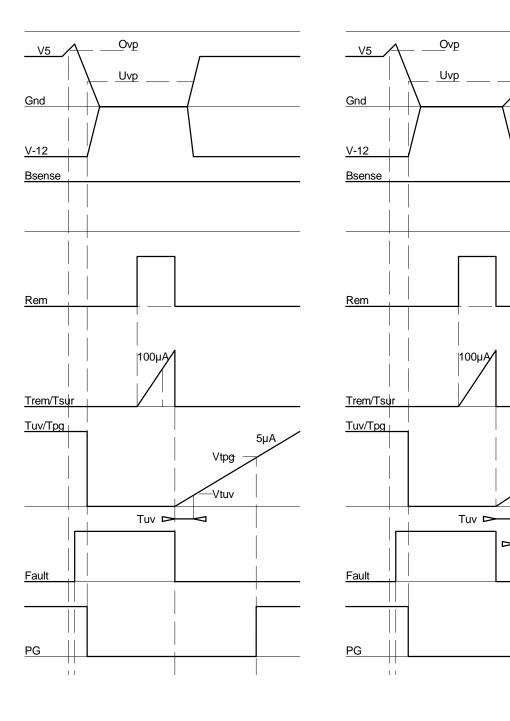




Fig. 2: Internal Bloc Schematic

TSM115


Principle of Operation and Application Hints


Fig. 3: Internal Detailed Schematic

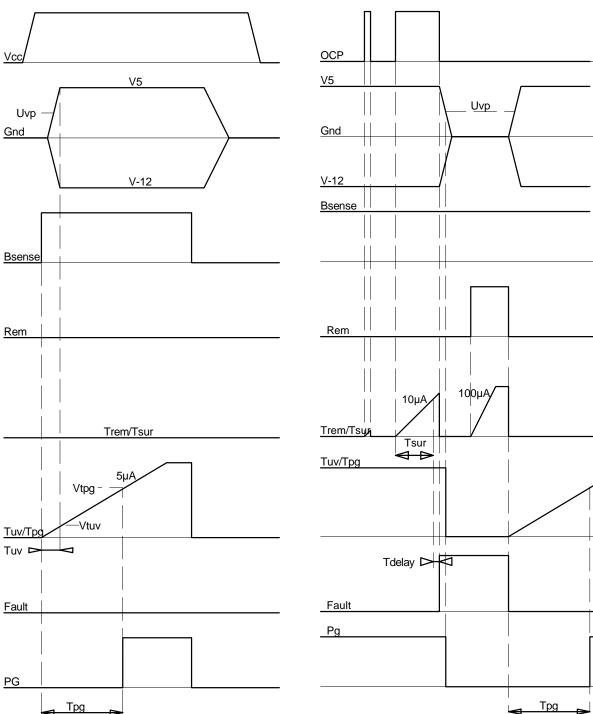
1 - Rem On/Off

2 - UVP Function Rem On/Off, Tuv start up OK

3 - OVP/UVP Function Rem On/Off, Tuv OK

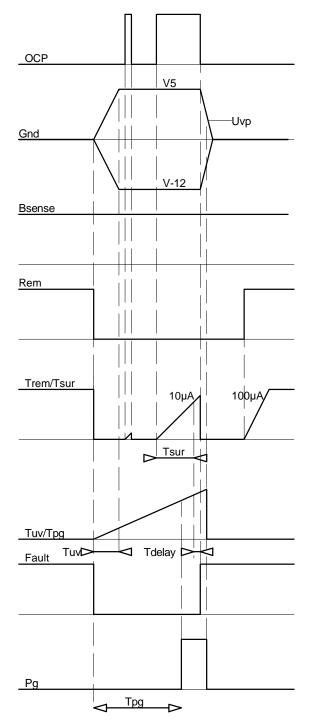
4 - OVP/UVP Function Rem On/Off, Tuv Nok

Vtuv

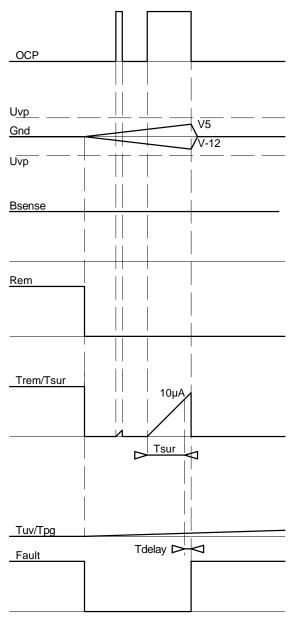

1

+

🗢 Tdelay

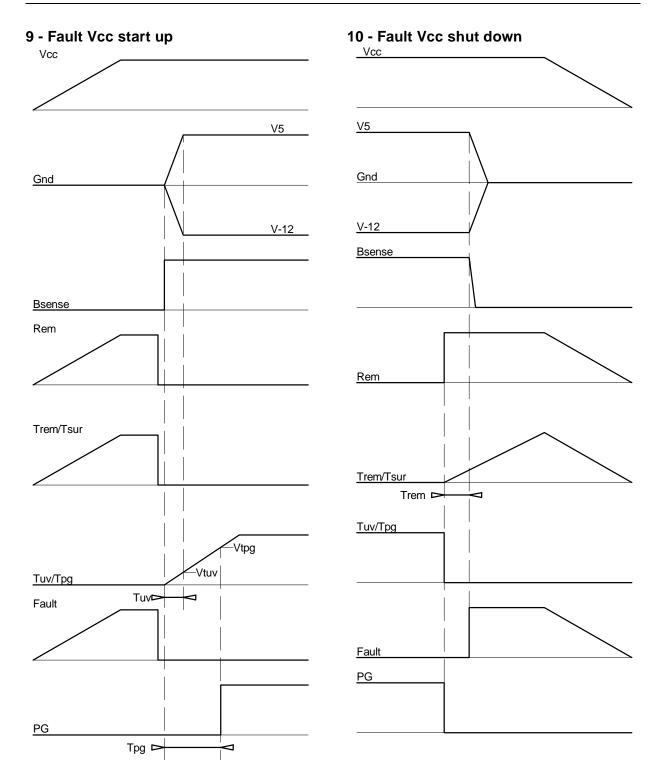

5 - Vcc turn On/off, Bsense

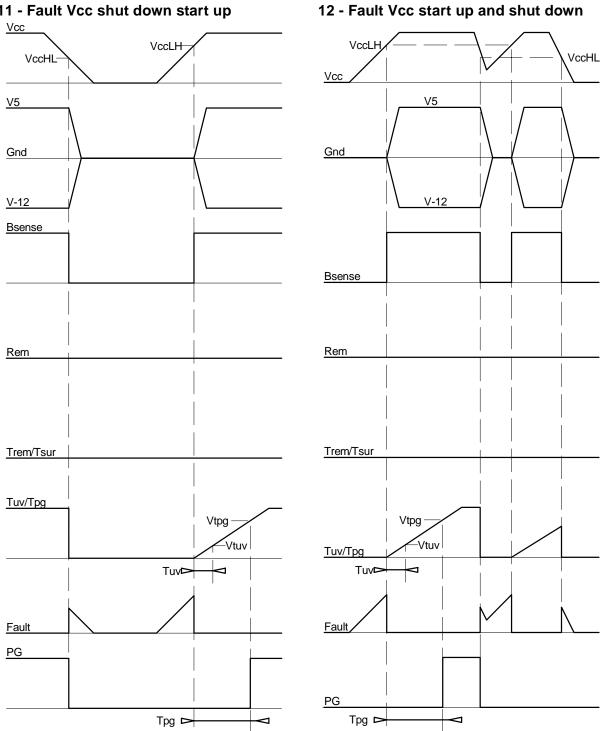
57

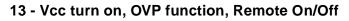


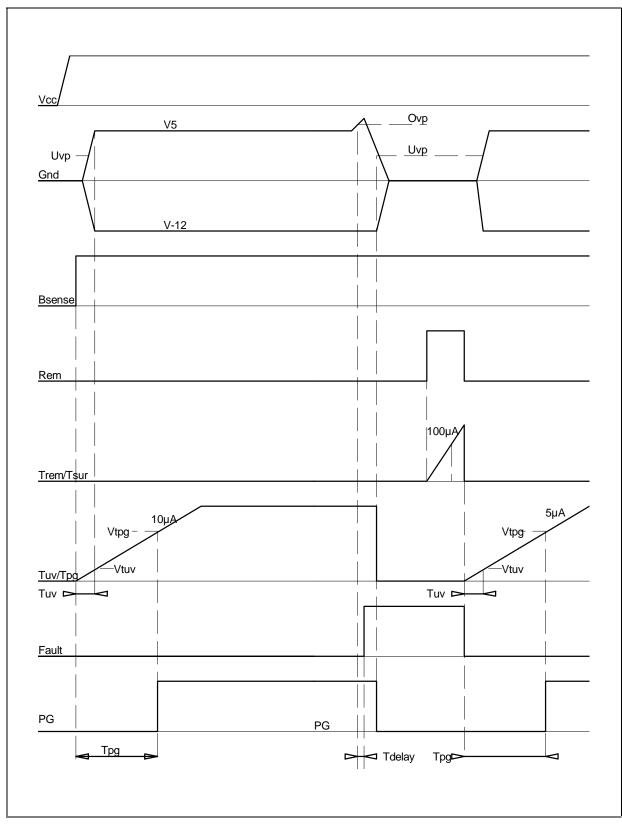
6 - OCP Rem On/Off

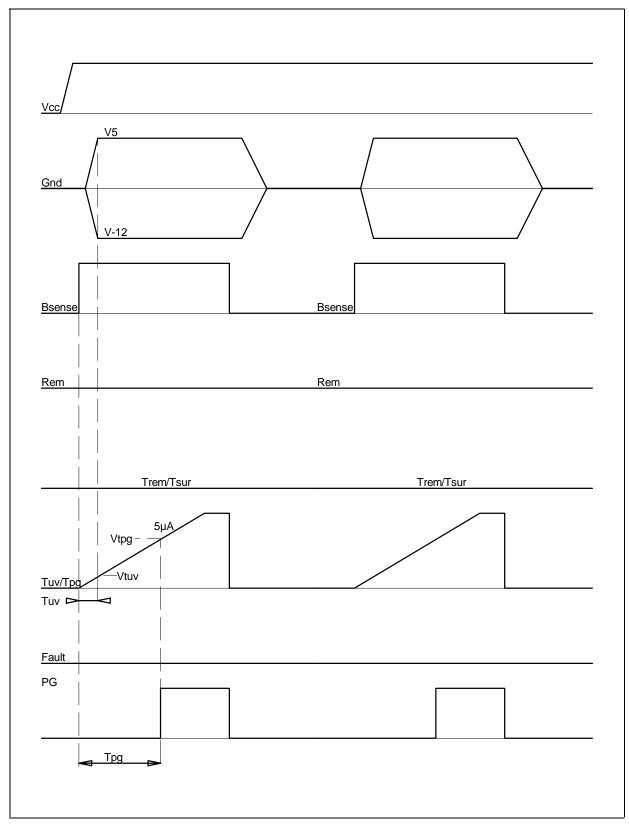
7 - Rem On/Off with OCP during Tpg




8 - Rem On/Off with OCP during Tuv


Pg





11 - Fault Vcc shut down start up

TSM115: Housekeeping IC

TSM115 is a one chip solution for all PC SMPS: it integrates on one chip the Housekeeping Circuitry (Over and under voltage and over current protections, with adequate sequencing).

Multiple Power Line Protection

The TSM115 Housekeeping Circuit is dedicated to 3.3V, 5V and $\pm 12V$ power lines protection. It integrates a multiple Over and under Voltage Protection Circuit and a multiple over current Protection Circuit as well as all the necessary logic and transient timing management circuits for optimal and secure communication with the motherboard, during start up, switch off and stabilized conditions.

Over Voltage Protection

The Over Voltage Protection Circuit is made of comparators with internal voltage thresholds which do not require any external components for proper operation. The outputs of these comparators are ORed.

Under Voltage Protection

The Under Voltage Protection Circuit is made of comparators with internal voltage thresholds which do not require any external components for proper operation. The outputs of these comparators are ORed, and blanked by an internal delay circuitry (Power Up Blanking - Tuv) which can be adjusted with an external capacitor (Cuv). This allows that during power up, the under voltage protection circuit is inhibited.

Over Current Protection

The Over current Protection Circuit is made of comparators with external thresholds which can be adjusted by changing a resistor. The outputs of these comparators are ORed.

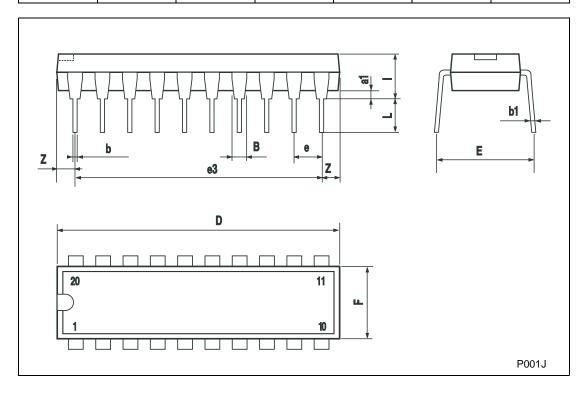
FAULT

The Over Voltage and Under Voltage Circuits outputs are ORed before activating a latch. When activated, this latch commands the full switch OFF of the main power lines (3.3V, 5V, 12V) by an external link between the housekeeping and the primary PWM circuits via the main optocoupler or any other device.

Power Good

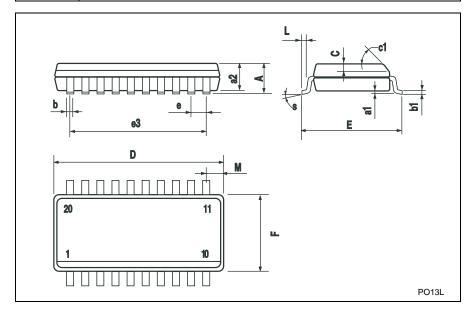
The Under Voltage Circuits are Ored to switch the Power Good output active (PG) to warn the motherboard that the voltage of at least one of the three power lines is out of range. The PG activation bears an internal Tpg delay circuitry which can be adjusted with an external capacitor (Cpg).

Remote Control


The remote control information from the mother board, enters via the Remote pin (REM) to activate an internal latch. When the Remote pin is active. the external Fault link between Housekeeping circuit and the PWM generator is active (high = PWM OFF) and the PG pin is active (high). Note that to reset effectively the latch, a minimum width Remote pulse should be applied thanks to an internal delay circuitry (Trem) which can be adjusted with an external capacitor (Crem).

57

Г


3 Package Mechanical Data

	Plastic DIP-20 (0.25) MECHANICAL DATA					
DIM.	mm.					
DIW.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
В	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D			25.4			1.000
E		8.5			0.335	
е		2.54			0.100	
e3		22.86			0.900	
F			7.1			0.280
I			3.93			0.155
L		3.3			0.130	
Z			1.34			0.053

Package Mechanical Data

5.14		mm.			inch	
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX
А			2.65			0.104
a1	0.1		0.2	0.004		0.008
a2			2.45			0.096
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.012
С		0.5			0.020	
c1			45°	(typ.)		•
D	12.60		13.00	0.496		0.512
Е	10.00		10.65	0.393		0.419
е		1.27			0.050	
e3		11.43			0.450	
F	7.40		7.60	0.291		0.300
L	0.50		1.27	0.020		0.050

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Repubic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com