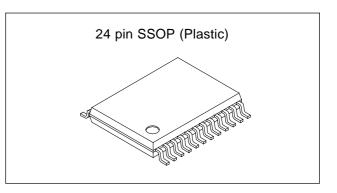
SONY

EIAJ Sound Multiplexing Decoder

Description

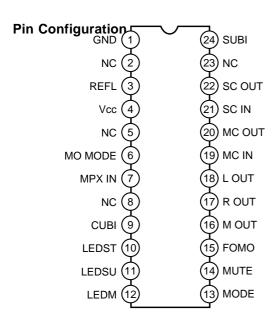

The CXA2202N, is a bipolar IC designed as EIAJ TV sound multiplexing decoder, provides various functions including sound multiplexing demodulation, broadcast mode identification (stereo/bilingual discrimination display), mode display, and muting.

Features

Applications

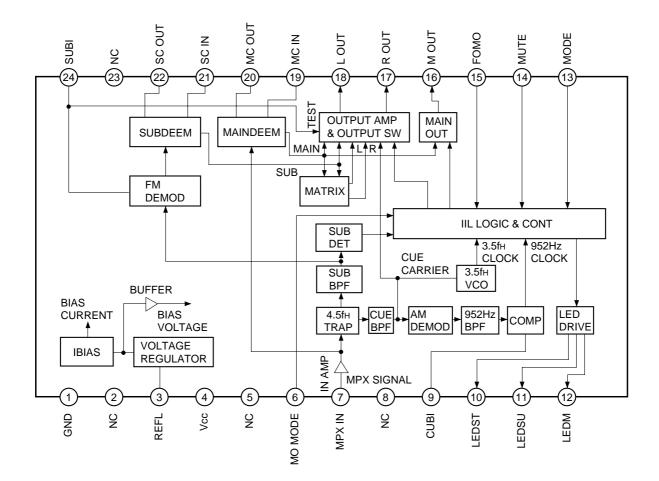
Color TVsHi-Fi VCRs

- Adjustment free of filter
- High frequency stereo separation improved
- An internal active filter greatly reduces the external parts
- Use of the countdown method for broadcast mode identification eliminates the necessity of adjusting the identification system (Cue oscillator)
- Internal filter eliminates interference from digital facsimile signals
- The discrimination time needed to shift from multiplexing sound to monaural sound is reduced.
- Output level: 520mVrms (1kHz, monaural, 100%)
- Forced monaural mode can be set to operate only for stereo broadcasts or for stereo/bilingual broadcasts.


Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings (Ta = 25°C)

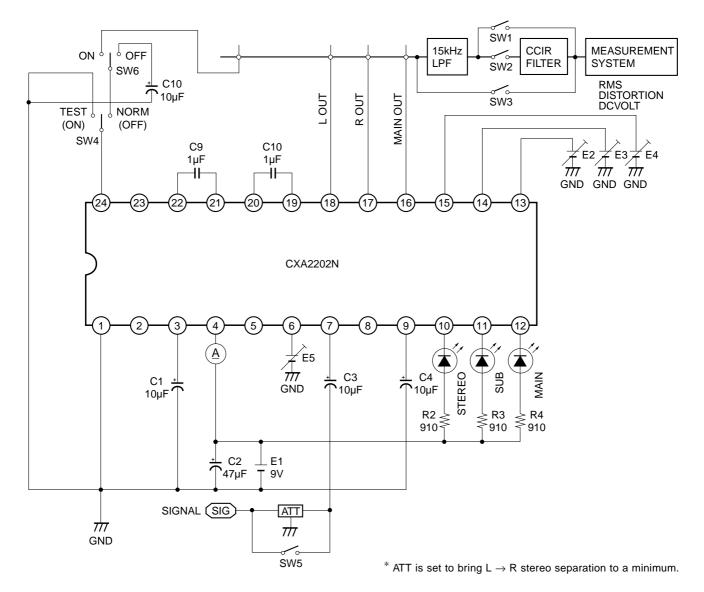

	U (,	
 Supply voltage 	Vcc	10	V
 Input signal (Pin 7) 	Vis	0.6	Vp-p
 Control voltage 			
(Pins 6, 13, 14, 15)	Vic	Vcc	V
• Operating temperature	Topr	-20 to +7	5 °C
 Storage temperature 	Tstg	-65 to +15	50 °C
• Allowable power dissip	ation		
	PD	520	mW
 LED drive current 	LED	10	mA

Operating Supply Voltage Range 8.5 to 9.5 V

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram

Pin Description


 $(Ta = 25^{\circ}C, Vcc = 9V)$

Die		D' -		
Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
1	GND	0		GND.
2 5 8 23	NC		_	Keep these pins open. (They are not connected to the chip.)
3	REFL	1.2V	Vcc 3 147 3 3 3 3 47 3 3 3 47 3 3 3 3 3 3 3 3	The noise elimination filter connection of internal reference voltage.
4	Vcc			Power supply.
6	MO MODE		€	Forced monaural mode selection. When Low or open, the forced monaural mode operates for stereo broadcasts only; if High, the forced monaural mode operates for both stereo and bilingual broadcasts.
7	MPX IN	4.1V	$7 \xrightarrow{V_{CC}} 147 \xrightarrow{1}138k$ $7 \xrightarrow{1}25k \xrightarrow{5}30k$ $777 \xrightarrow{2}25\mu \xrightarrow{4}22\nu$ GND	Sound multiplexing signal input. Typical input level = 70mVrms (monaural, 100%)
9	CUBI	4.1V	$\begin{array}{c} & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	Bias capacitor connection of Cue pulse generator.

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
10	LEDST			
11	LEDSU	_	$\begin{array}{c} 12 \\ \hline 10.5k \\ \hline 177 \\ \hline 10.5k \\ \hline 777 \\ \hline 64k \\ \hline 16k \\ \hline 16k \\ \hline \end{array}$	Mode indicator LED connection. Pin 10: stereo Pin 11: sub Pin 12: main
12	LEDM		16k 64k 16k GND	
13	MODE	_	$\begin{array}{c} 20k \\ \hline 13 \\ \hline 777 \\ \hline 10.5k \\ \hline \end{array} \\ \begin{array}{c} 20k \\ \hline 40k \\ \hline \end{array} \\ \begin{array}{c} 4.2V \\ \hline \\ GND \\ \end{array}$	DC voltage-based output mode switch for bilingual broadcasts.
14	MUTE		(14)	Output muting. When High, only DC is output from Pins 16, 17 and 18.
15	FOMO	_	(15)	Forced monaural. When High, forced monaural (main sound) mode is selected and the LED turns off.
16	M OUT	4.1V	Vcc 147 16 17.2k 32k 1.5m 32k 32k GND	Main signal output. Always outputs the main signal component, regardless of the broadcast mode.

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
17	R OUT	4.1V	Vcc 147 17.2k 17.2k 1.5m $32kGND$	R-ch output.
18	L OUT	4.1V	Vcc 147 17.2k 32k 1.5m $32k32k32k32k32k32k32k32k32k$	L-ch output. During "TEST", the Cue signal component passed through the Cue BPF is output.
19	MC IN	4.1V	V_{CC} V_{CC} $147 \implies 10k \implies 10k$ $147 \implies 10k $	DC cut capacitor connection of main
20	MC OUT	3.4V	$19 \xrightarrow{777} 147 \xrightarrow{147} 144 \xrightarrow{14.4k} 5.6k \xrightarrow{14.2V} 160\mu \xrightarrow{40\mu} 150\mu \xrightarrow{150\mu} GND$	signal.
21	SC IN	4.1V	$\begin{array}{c} V_{CC} \\ \hline \\ 22 \\ \hline \\ V_{CC} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	DC cut capacitor connection of sub
22	SC OUT	3.9V	$777 40k = 320\mu$ 147 $11.4k 5.6k$ $11.4k 5.6k$ $777 777$ $4.2V$ 40μ 180μ GND	signal.
24	SUBI	4.1V	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	Bias capacitor connection of sub FM detector. "TEST" mode, used for filter adjustment, is activated by grounding this pin.

- 5 -

Electrical Characteristics Measurement Circuit

-6-

Electrical Characteristics

 $(Ta = 25^{\circ}C, Vcc = 9V)$

										,
No.	ltem	Symbol	SW condi- tions	Bias condi- tions	Conditions	Measure- ment point	Min.	Тур.	Max.	Unit
1	Current consumption	lcc	1	1	Measure current input to Pin 4	Pin 4	17	25	36	mA
2	Sub output level 400Hz	Vs1	4	2 and 3	Input signal: SIG1 Measure output amplitude (400Hz, sine wave) of Pins 17 and 18: Vs1 (15kLPF)	Pins 17 and 18 ^{*1}	480	580	690	mVrms
3	Sub frequency characteristics 1kHz	Fs1	4	2 and 3	Input signal: SIG2 Measure output amplitude (1kHz, sine wave) of Pins 17 and 18: Vs2 Fs1 = 20 log $\frac{Vs2}{Vs1}$ (15kLPF)	Pins 17 and 18 ^{*1}	-1.6	-0.6	0	dB
4	Sub frequency characteristics 10kHz	Fs2	4	2 and 3	Input signal: SIG3 Measure output amplitude (10kHz, sine wave) of Pins 17 and 18: Vs3 Fs2 = 20 log $\frac{Vs3}{Vs1}$ (15kLPF)	Pins 17 and 18 ^{*1}	-19.0	-16.5	-14.0	dB
5	Sub distortion	Ds	4	2 and 3	Input signal: SIG2 Measure distortion of output signal (1kHz, sine wave) of Pins 17 and 18 (15kLPF)	Pins 17 and 18 ^{*1}	_	1	2	%
6	Sub S/N ratio	Ns	4	2 and 3	Input signal: SIG2 Measure S/N ratio of output (1kHz) of Pins 17 and 18 (15kLPF. RMS)	Pins 17 and 18 ^{*1}	59	64		dB
7	Stereo distortion L-ch	Dstl	4	2	Input signal: SIG4 Measure distortion of output signal (1kHz, sine wave) of Pin 18 (15kLPF)	Pin 18	_	0.2	1.5	%
8	Stereo distortion R-ch	Dstr	4	2	Input signal: SIG5 Measure distortion of output signal (1kHz, sine wave) of Pin 17 (15kLPF)	Pin 17	_	0.2	1.5	%

*1 When bias condition is "3", measurement point is Pin 17 only.

No.	ltem	Symbol	SW condi- tions	Bias condi- tions	Conditions	Measure- ment point	Min.	Тур.	Max.	Unit
9	Stereo output level L-ch 1kHz	Vstl	4	2	Input signal: SIG4 Measure output amplitude (1kHz, sine wave) of Pin 18 (15kLPF)	Pin 18	440	540	640	mVrms
10	Stereo output level R-ch 1kHz	Vstr	4	2	Input signal: SIG5 Measure output amplitude (1kHz, sine wave) of Pin 17 (15kLPF)	Pin 17	440	540	640	mVrms
11	Main output level MAIN OUT	Vm1	4	2	Input signal: SIG6 Measure output signal (400Hz, sine wave) of Pin 16 (15kLPF)	Pin 16	480	580	690	mVrms
12	Main output level	Vm2	4	2	Input signal: SIG6 Measure amplitude of output signal (400Hz, sine wave) of Pins 17 and 18 (15kLPF)	Pins 17 and 18	480	580	690	mVrms
13	Main frequency characteristics 1kHz	Fm1	4	2	Input signal: SIG7 Measure output amplitude (1kHz, sine wave) of Pins 17 and 18: Vm3 Fm1 = 20 log $\frac{Vm3}{Vm2}$ (15kLPF)	Pins 17 and 18	-1.6	-0.6	0	dB
14	Main frequency characteristics 10kHz	Fm2	4	2	Input signal: SIG8 Measure output amplitude (10kHz, sine wave) of Pins 17 and 18: Vm4 Fm2 = 20 log $\frac{Vm4}{Vm2}$ (15kLPF)	Pins 17 and 18	-16.0	-14.0	-12.0	dB
15	Main distortion MAIN OUT	Dm1	4	2	Input signal: SIG7 Measure distortion of output signal (1kHz, sine wave) of Pin 16 (15kLPF)	Pin 16		0.2	1	%
16	Main distortion	Dm2	4	2	Input signal: SIG7 Measure distortion of output signal (1kHz, sine wave) of Pins 17 and 18 (15kLPF)	Pins 17 and 18		0.2	1	%

No.	Item	Symbol	SW condi- tions	Bias condi- tions	Conditions	Measure- ment point	Min.	Тур.	Max.	Unit
17	Main distortion at maximum input	Dm3	4	2	Input signal: SIG9 Measure distortion of output signal (1kHz, sine wave) of Pins 17 and 18 (15kLPF)	Pins 17 and 18	_	0.3	2	%
18	Main S/N ratio	Nm	4	2	Input signal: SIG7 Measure S/N ratio of output signal (1kHz) of Pins 17 and 18 (15kLPF. RMS)	Pins 17 and 18	65	73	_	dB
19	Stereo separation $L \rightarrow R$	Sstr	4	2	Input signal: SIG4 Sstr = 20 log	Pins 17 and 18	35	45		dB
20	Stereo separation R → L	Sstl	4	2	Input signal: SIG5 Sstl = 20 log	Pins 17 and 18	35	45		dB
21	Cross talk MAIN → SUB	Cms1	2	2	Input signal: SIG15 Calculate the level difference between the output amplitude of Pins 17 and 18 (Vms1) and the measured value (Vm3) in measurement No. 13 Cms1 = 20 log $\frac{Vm3}{Vms1}$ (dB) (15kLPF, 1kBPF)	Pins 17 and 18	55	58		dB
22	Cross talk SUB → MAIN	Csm1	2	1	Input signal: SIG2 Calculate the level difference between the output amplitude of Pins 17 and 18 (Vsm1) and the measured value (Vs2) in measurement No. 3. Csm1 = 20 log $\frac{Vs2}{Vsm1}$ (dB) (15kLPF, 1kBPF)	Pins 17 and 18	60	70		dB

No.	Item	Symbol	SW condi- tions	Bias condi- tions	Conditions	Measure- ment point	Min.	Тур.	Max.	Unit
23	Cross talk MAIN → SUB BOTH mode	Cms2	2	3	Input signal: SIG15 Calculate the level difference between the output amplitude of Pin 17 (Vms2) and the output amplitude of Pin 18 (Vms3). Cms2 = 20 log $\frac{Vms3}{Vms2}$ (dB) (15kLPF, 1kBPF)	Pins 17 and 18	55	58		dB
24	Cross talk SUB → MAIN BOTH mode	Csm2	2	3	Input signal: SIG2 Calculate the level difference between the output amplitude of Pin 18 (Vsm2) and the output amplitude of Pin 17 (Vsm3). Csm2 = 20 log $\frac{Vsm3}{Vsm2}$ (dB) (15kLPF, 1kBPF)	Pins 17 and 18	60	70		dB
25	Residual carrier SUB	Lcs	3	2	Input signal: SIG11 Measure subcarrier component amplitude of the output of Pins 17 and 18.	Pins 17 and 18	_	10	30	mVrms
26	Residual carrier MAIN	Lcm	3	1	Input signal: SIG11 Measure the subcarrier component amplitude of the output of Pins 17 and 18.	Pins 17 and 18	_	12	20	mVrms
27	Mute volume MAIN	Mm	4	4	Input signal: SIG7 Calculate the level difference between the output amplitude of Pins 17 and 18 (VMm) and the measured value (Vm3) in measurement No. 13. Mm = 20 log $\frac{Vm3}{VMm}$ (dB) (15kLPF, 1kBPF)	Pins 17 and 18	70	80		dB

No.	Item	Symbol	SW condi- tions	Bias condi- tions	Conditions	Measure- ment point	Min.	Тур.	Max.	Unit
28	Mute volume SUB	Ms	4	4	Input signal: SIG2 Calculate the level difference between the output amplitude of Pins 17 and 18 (VMs) and the measured value (Vs2) in measurement No. 3. Ms = 20 log $\frac{Vs2}{VMs}$ (dB) (15kLPF, 1kBPF)	Pins 17 and 18	70	80		dB
29	Mute volume stereo	Mst	4	2 and 4	Input signals: SIG4, 5 Measure the level difference between the output signals of Pins 17 and 18 under bias conditions 2 and 4. Mst = Measured value under bias 20 log <u>condition 2 (mVrms)</u> Measured value under bias condition 4 (mVrms) (15kLPF, 1kBPF)	Pins 17 and 18 ^{*2}	70	80		dB
30	DC offset stereo L-ch	Ostl	3	2 and 4	Input signal: SIG18 Measure the fluctuation in the output DC level of Pin 18 under bias conditions 2 and 4.	Pin 18		20	100	mV
31	DC offset stereo R-ch	Ostr	3	2 and 4	Input signal: SIG18 Measure the fluctuation in the output DC level of Pin 17 under bias conditions 2 and 4.	Pin 17		20	100	mV
32	DC offset MAIN OUT	Om	3	2 and 4	Input signal: No signal Measure the fluctuation in the output DC level of Pin 16 under bias conditions 2 and 4.	Pin 16	_	20	100	mV
33	Cue detection sensitivity	CD	4	2	Input signal: SIG12 Change SIG12 and measure amount of attenuation at the point "monaural" switches to "Sound multiplex".	_	9	14	17	dB

 \ast_2 Measure Pin 18 for SIG4 input; Pin 17 for SIG5 input.

No.	ltem	Symbol	SW condi- tions	Bias condi- tions	Conditions	Measure- ment point	Min.	Тур.	Max.	Unit
34	SUB detection sensitivity	SD	4	2	Input signal: SIG13 Change SIG13 and measure amount of attenuation at the point "monaural" switches to "Sound multiplex".	_	10	13	18	dB
35	Cue BPF gain	CG	5	2	Input signal: SIG14 Measure the output amplitude of Pin 18.	Pin 18	410	600	760	mVrms
36	4.5fн trap attenuation level	TG	6	2	Input signal: SIG16, 17 Measure output amplitude of Pin 24 and then measure the level difference in the output signal for SIG16 input and SIG17 input. TG = Measured value for SIG16 20 log $\frac{(mVrms)}{Measured value}$ for SIG17 (mVrms)	Pin 24	20	38		dB

SW Condition Table

SW No.	1	2	3	4	5	6
1	off	off	off	off	off	off
2	off	on	off	off	off	off
3	off	off	on	off	off	off
4	on	off	off	off	off	off
5	off	off	on	on	on	off
6	off	off	on	off	on	on

BIAS Condition Table

BIAS No.	E1	E2	E3	E4	E5
1	9V	0.5V	0.5V	0.5V	0.5V
2	9V	4.5V	0.5V	0.5V	0.5V
3	9V	2.5V	0.5V	0.5V	0.5V
4	9V	4.5V	4.5V	0.5V	0.5V

Input Signal Definition

SIG1:	Sound MPX signal Main: 0% Sub: 400Hz, 100% MOD Cue: Bilingual	SIG10:	Sound MPX signal L-ch: 1kHz, 100% R-ch: 0% Cue: Cue signal off
SIG2:	Sound MPX signal Main: 0% Sub: 1kHz, 100% MOD Cue: Bilingual	SIG11:	Sound MPX signal Main: 0% Sub: 0% (Carrier only) Cue: Bilingual
SIG3:	Sound MPX signal Main: 0% Sub: 10kHz, 100% MOD Cue: Bilingual	SIG12:	Sound MPX signal Main: 0% Sub: 0% (Carrier only) Cue: Bilingual (level adjusted to minimum)
SIG4:	Sound MPX signal L-ch: 1kHz, 100% R-ch: 0% Cue: Stereo	SIG13:	Sound MPX signal Main: 0% Sub: 0% (level adjusted to minimum) Cue: Bilingual
SIG5:	Sound MPX signal L-ch: 0% R-ch: 1kHz, 100%	SIG14:	55.069kHz sine wave 5.6mVrms
	Cue: Stereo	SIG15:	Sound MPX signal Main: 1kHz, 100%
SIG6:	Sound MPX signal Main: 400Hz, 100% Sub: Carrier off		Sub: 0% (Carrier only) Cue: Bilingual
	Cue: Cue signal off	SIG16:	31.47kHz sine wave 42mVrms
SIG7:	Sound MPX signal Main: 1kHz, 100% Sub: Carrier off Cue: Cue signal off	SIG17:	70.80kHz sine wave 42mVrms
SIG8:	Sound MPX signal Main: 10kHz, 100% Sub: Carrier off Cue: Cue signal off	SIG18:	Sound MPX signal L-ch: 0% R-ch: 0% Cue: Stereo
SIG9:	Sound MPX signal Main: 1kHz, 300% Sub: Carrier off Cue: Cue signal off	* Sound at 1Vj - 13 –	d MPX signal level is defined as 100% MONO p-p.

Output and LED On/Off Table

[MODE SW		Forced Forced		Output condition			LED On/Off condition				
Broadcast condition	SUB	вотн	MAIN	monaural MODE	Forced monaural	MUTE	L	R	MAIN	STEREO	SUB	MAIN
Stereo	×	×	×	×	OFF	OFF	L	R	L + R	ON	OFF	OFF
	×	×	×	×	ON	OFF	L+ R	L+ R	L+ R	OFF	OFF	OFF
	×	×	×	×	×	ON	DC	DC	DC	OFF	OFF	OFF
	ON			F.MONO	×	OFF	SUB	SUB	MAIN	OFF	ON	OFF
		ON		F.MONO	×	OFF	MAIN	SUB	MAIN	OFF	ON	ON
			ON	F.MONO	×	OFF	MAIN	MAIN	MAIN	OFF	OFF	ON
Dilingual	ON			F.MAIN	OFF	OFF	SUB	SUB	MAIN	OFF	ON	OFF
Bilingual		ON		F.MAIN	OFF	OFF	MAIN	SUB	MAIN	OFF	ON	ON
			ON	F.MAIN	OFF	OFF	MAIN	MAIN	MAIN	OFF	OFF	ON
	×	×	×	F.MAIN	ON	OFF	MAIN	MAIN	MAIN	OFF	OFF	OFF
	×	×	×	×	×	ON	DC	DC	DC	OFF	OFF	OFF
Manaural	×	×	×	×	×	OFF	MONO	MONO	MONO	OFF	OFF	OFF
Monaural	×	×	×	×	×	ON	DC	DC	DC	OFF	OFF	OFF

 \times : No response

Control Voltage Range

		Voltage range
	SUB	4.5V to Vcc
MODE SW Pin 13	BOTH	2V to 3V (or open)
	MAIN	0V to 0.5V
Forced monaural	on	3V to Vcc
Pin 15	off	0V to 0.5V (or open)
MUTE	on	3V to Vcc
Pin 14	off	0V to 0.5V (or open)
Forced monaural mode	F.MAIN	3V to Vcc
Pin 6	F.MONO	0V to 0.5V (or open)

Description of Operation

The sound mutiplexing signal input from Pin 7 is passed through IN AMP and is applied to the Cue BPF, Sub BPF, and Main de-emphasis circuit.

1. Discrimination circuits

Cue BPF passes only the Cue signal component from the multiplex signal. In the AM demodulator, the signal (AM wave) is AM detected and one of two sine waves is generated, either a 922.5Hz signal for bilingual broadcasts or a 982.5Hz signal for stereo broadcasts.

In the 952Hz BPF, the $3.5f_{\rm H}$ carrier component is eliminated from the Cue signal after AM wave detection. The Cue signal, from which the carrier component has been eliminated, is waveform shaped by COMP, with the resulting 922.5Hz or 982.5Hz pulse being applied to the Logic section.

In the 3.5fH VCO, a 3.5fH pulse locked onto the Cue signal carrier (3.5fH) is created and sent to the Logic section.

In the Logic section, the broadcast mode is identified using the countdown method. Depending on this result as well as the presence of a SUB signal from SUB detector and the MUTE ON/OFF, MODE switching, and FOMO ON/OFF instructions from CONT, the output switching control signal is created. This signal is used to control the output condition of OUTPUT SW and MAIN OUT.

2. Main circuits

In MAIN DEEM, de-emphasis is applied to the Main signal component and the Sub and Cue components are removed.

After passing through the MAIN DEEM, the Main signal is applied to MATRIX, OUTPUT AMP, and MAINOUT.

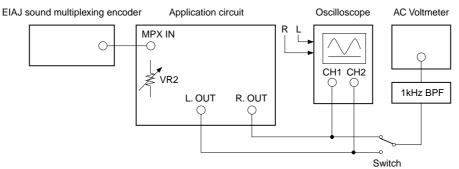
3. Sub circuits

In SUB BPF, only the SUB signal component out of multiplex signals is passed through. In the 4.5fH trap, the digital facsimile signal component is removed.

In FM Demod, the SUB signal is FM demodulated.

In SUB DEEM, the FM demodulated Sub signal is de-emphasized and the carrier component is removed. After passing through SUB DEEM, the Sub signal is applied to MATRIX and OUTPUT AMP.

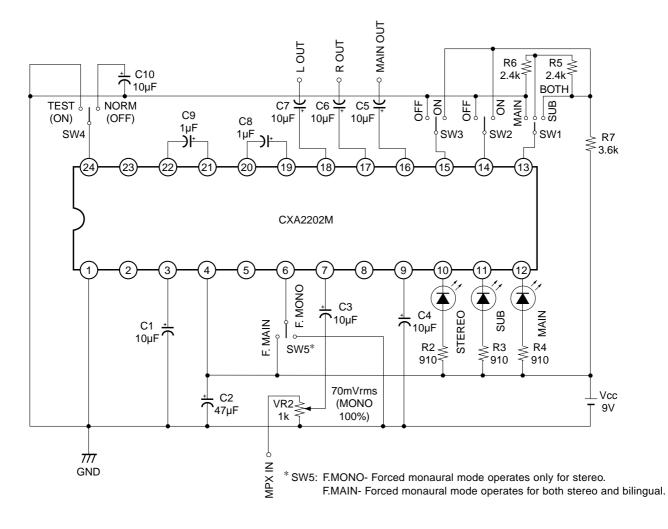
4. MATRIX and output circuits


In MATRIX, the L and R signals are created by adding and subtracting the Main signal from MAIN DEEM and the Sub signal from SUB DEEM in stereo broadcast.

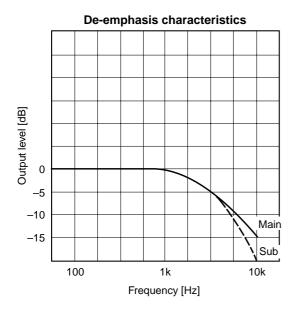
In OUTPUT AMP and OUTPUT SW, the output signal is switched under the control of Logic.

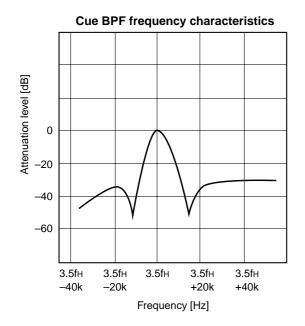
In addition, MAIN OUT always outputs the MAIN signal component, regardless of the broadcast mode.

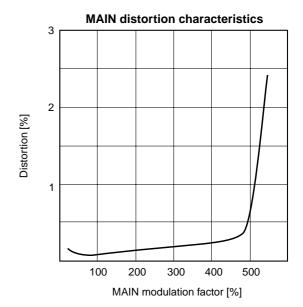
Adjustment


Separation adjustment

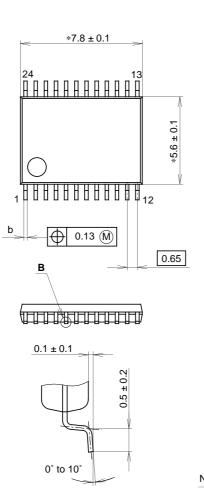
Procedure


- 1) Connect components as shown in figure above. (Set SW4 to NORM.)
- 2) Set the encoder to stereo mode, and input a 100% modulated 1kHz signal; also set the encoder so that only the L-ch is output.
- 3) Monitor the oscilloscope and AC voltmeter and adjust VR2 so that the R-ch is at a minimum. (Separation standard: 35dB or more)

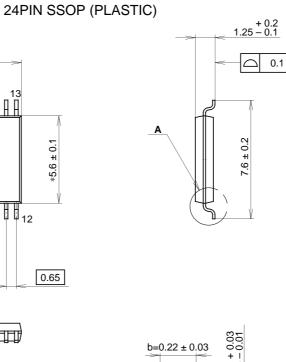

Application Circuit


Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Example of Representative Characteristics



SUB BPF frequency characteristics


Package Outline

Unit: mm

SONY CODE	SSOP-24P-L01
EIAJ CODE	P-SSOP24-7.8x5.6-0.65
JEDEC CODE	

ò DETAIL B : PALLADIUM

NOTE: Dimension "*" does not include mold protrusion.

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	PALLADIUM PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	0.1g