SEMiX 252GB176HDs

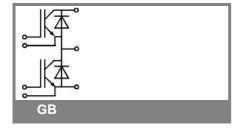
SEMiX[®] 2s

Trench IGBT Modules

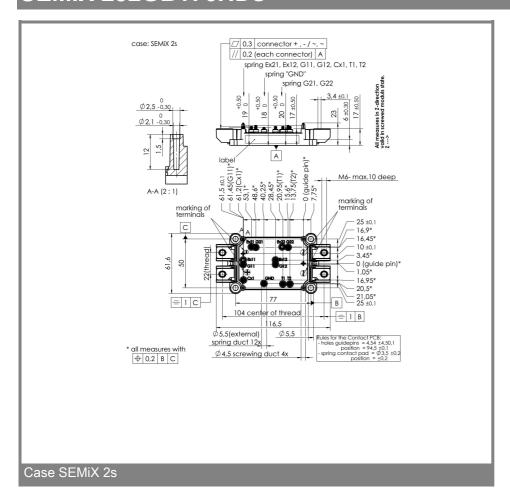
SEMiX 252GB176HDs

Target Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability

Typical Applications


- AC inverter drives
- UPS
- Electronic welders

Absolute Maximum Ratings		case = 25°C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1700	V					
I _C	T _c = 25 (80) °C	260 (170)	Α					
I _{CRM}	$t_{\rm p} = 1 \rm ms$	300	Α					
V_{GES}	,	± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V_{isol}	AC, 1 min.	4000	V					
Inverse diode								
I _F	T _c = 25 (80) °C	210 (140)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	300	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 25 \text{ °C}$	1200	Α					

Characte	ristics	case = 25°C	_e = 25°C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units			
IGBT								
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 6 \text{ mA}$	5,2	5,8	6,4	V			
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$			1,2	mA			
V _{CE(TO)}	$T_j = 25 (125) ^{\circ}C$		1 (0,9)	,	V			
r _{CE}	$V_{GE} = 15 \text{ V}, T_j = 25 (125) ^{\circ}\text{C}$		6,7 (10,3)		mΩ			
$V_{CE(sat)}$	I _{Cnom} = 150 A, V _{GE} = 15 V,		2 (2,45)	2,45 (2,9)	V			
	T _j = 25 (125) °C, chip level							
C _{ies}	under following conditions		11,5		nF			
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		0,6		nF –			
C _{res}			0,5		nF			
L _{CE}			18		nH			
R _{CC'+EE'}	terminal-chip, T _c = 25 (125) °C				mΩ			
$t_{d(on)}/t_r$	V _{CC} = 1200 V, I _{Cnom} = 150 A				ns			
t _{d(off)} /t _f	V _{GE} = ± 15 V				ns			
E _{on} (E _{off})	$R_{Gon} = R_{Goff} = \Omega$, $T_j = 125 ^{\circ}C$		100 (50)		mJ			
Inverse d								
$V_F = V_{EC}$	I_{Fnom} = 150 A; V_{GE} = 0 V; T_j = 25 (125) °C, chip level		1,7 (1,7)	1,9 (1,9)	V			
$V_{(TO)}$	T _j = 25 (125) °C		1,1 (0,9)	1,3 (1,1)	V			
r _T	$T_j = 25 (125) ^{\circ}C$		4 (5,3)	4 (5,3)	mΩ			
I _{RRM}	$I_{Fnom} = 150 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$				A			
Q _{rr}	di/dt = A/μs				μC			
E _{rr}	V _{GE} = -15 V				mJ			
Thermal characteristics								
R _{th(j-c)}	per IGBT			0,12	K/W			
R _{th(j-c)D}	per Inverse Diode			0,2	K/W			
R _{th(j-c)FD}	per FWD				K/W			
R _{th(c-s)}	per module		0,045		K/W			
	ure sensor	i						
R ₂₅	$T_c = 25 ^{\circ}C$		5 ±5%		kΩ			
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]$; T[K];B		3420		K			
Mechanic	al data							
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm			
w			236		g			
	1	1						

SEMiX 252GB176HDs

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

2 01-12-2005 GES © by SEMIKRON