Dot Matrix High Duty LCD Driver

\author{

- 100 Output
 - 1/64 to 1/300 in display duty
 - CMOS High Voltage Resistant Process
}

OVERVIEW

The SED1670 is a 100 output low-power resistance common (row) driver which is suitable for driving a very high capacity dotmatrix LCD panels upto a duty ratio of $1 / 300$. It is intended to be used in conjunction with the SED1640D or SED1606D as a pair.
Since the SED1670 is so designed to drive LCDs over a wide range of voltages, and also the maximum potential V0 of its LCD drive bias voltages is isolated from VDD to allow the LCD driving bias voltages to be externally generated optionally with a high accuracy, it can cope with a wide range of LCD panels.
Owing to its pad layout which can minimize its PC boards mounting space in addition to its selectable bidirectional driver output sequence and as many as 100 LCD output segments of high pressure resistance and low output impedance, it is possible to obtain the highest driver working efficiency for the 1/200 duty panel.
And the SED1670 can display 65×132 panel when used as a common driver of RAM buit-in driver, SED1531.

FEATURES

- Number of LCD drive output segments: 100
- Common output ON resistance: 700Ω (Typ.)
- Display duty ratio: $1 / 64$ to $1 / 300$ (Reference)
- Display capacity: Possible to display 640×480 dots when used in combination with SED 1640D or SED1606D.
- Selectable pin output shift direction
- No-bias display OFF function (*1*)
- Instantaneous display blanking enabled by inhibit function (*0*)
- Adjustable offset bias of LCD power to VDD level
- Wide range of LCD drive voltages: -7 V to -28 V (Absolute maximum rated voltage: -30 V)
- Logic system power supply: -2.7 V to -5.5 V
- Chip packaging

SED1670D0A (Al-pad die form)
SED1670D1A
SED1670Dob (Au bump die form)
SED1670D1B
SED1670ToA (TCP die form) * Under Planning
SED1670T1A * Under Planning

- No radial rays countermeasure taken in designing

INH in SED1670 ${ }^{\circ}$ $\overline{\mathrm{DOFF}}$ in SED16701*

- PAD LAYOUT AND COORDINATES

1) Au bump specification reference values

Bump specific: High Quarity Au bump
Bump size: $\quad 100 \mu \mathrm{~m} \times 113 \mu \mathrm{~m}$
Bump height : $17 \mu \mathrm{~m}-28 \mu \mathrm{~m}$
2) Al Pad specification reference values

Pad Opening: $100 \mu \mathrm{~m} \times 100 \mu \mathrm{~m}$

PAD		Actual dimensions	
NO.	NAME	X	Y
1	COM5	-2187	-1357
2	6	-2058	
3	7	-1929	
4	8	-1799	
5	9	-1670	
6	10	-1541	
7	11	-1412	
8	12	-1283	
9	13	-1153	
10	14	-1024	
11	15	-895	
12	16	-766	
13	17	-637	
14	18	-507	
15	19	-378	
16	20	-249	
17	21	-120	
18	22	10	
19	23	139	
20	24	268	
21	25	397	
22	26	526	
23	27	656	
24	28	785	
25	29	914	
26	30	1043	
27	31	1172	
28	32	1302	
29	33	1431	
30	34	1560	
31	35	1689	
32	36	1818	
33	37	1948	
34	38	2077	
35	39	2206	\downarrow
36	40	2335	-1357
37	41	2584	-1231
38	42	2584	-1094
39	43	2584	-969
40	44	2584	-840

PAD		Actual dimensions	
NO.	NAME	X	Y
41	COM45	2584	-711
42	46		-581
43	47		-452
44	48		-323
45	49		-194
46	50		-65
47	51		65
48	52		194
49	53		323
50	54		452
51	55		581
52	56		711
53	57		840
54	58		969
55	59	\checkmark	1098
56	60	2584	1231
57	61	2298	1357
58	62	2168	
59	63	2039	
60	64	1910	
61	65	1781	
62	66	1652	
63	67	1522	
64	68	1393	
65	69	1264	
66	70	1135	
67	71	1006	
68	72	876	
69	73	747	
70	74	618	
71	75	489	
72	76	360	
73	77	230	
74	78	101	
75	79	-28	
76	80	-157	
77	81	-286	
78	82	-416	
79	83	-545	\checkmark
80	84	-674	1357

PAD No. 97: $\overline{\mathrm{INH}}$ for SED1670*0* DOFF for SED1670*1*

- ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Supply voltage (1)	Vss	-7.0 to +0.3	V
Supply voltage (2)	V_{5}	-30.0 to +0.3	V
Supply voltage (3)	$\mathrm{V} 0, \mathrm{~V} 1, ~ \mathrm{~V} 4$	$\mathrm{~V} 5-0.3$ to +0.3	V
Input voltageV।		$\mathrm{Vss}-0.3$ to +0.3	V
Output voltage	Vo	Vss -0.3 to +0.3	V
Output current (1)	locom	20	mA
Output current (2)	Topr	20	mA
Operating temperature	Tstg	-40 to +85	${ }^{\circ} \mathrm{C}$
Storing temperature 1	-65 to +150	${ }^{\circ} \mathrm{C}$	

Notes: 1. The voltage of $\mathrm{V}_{0}, \mathrm{~V}_{1}$ and V_{4} must always satisfy the condition of $\mathrm{V}_{\mathrm{DD}} \geqq \mathrm{V}_{0} \geqq \mathrm{~V}_{1} \geqq \mathrm{~V}_{4} \geqq \mathrm{~V}_{5}$.
2. Floating of the logic system power during while the LCD drive system power is applied, or exceeding VSS $=-2.6 \mathrm{~V}$ or more can cause permanent damage to the LSI. Functional operation under these conditions is not implied.
Care should be taken to the power supply sequence especially in the system power ON or OFF.

-ELECTRICAL CHARACTERISTICS

- DC characteristics
(Unless otherwise specified, $\mathrm{VDD}_{\mathrm{DD}}=\mathrm{V}_{0}=0 \mathrm{~V}, \mathrm{Vss}=-5.0 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$.)

Parameter	Symbol		Condition	Min.	Typ.	Max.	Unit	Applicable pin
Supply voltage (1)	Vss		-	-5.5	-5.0	-2.7	V	Vss
Recommended operating voltage	V5		-	-28.0	-	-7.0	V	V5
Operation enable voltage	V5		nctional operation	-	-	-7.0	V	V5
Supply voltage (2)	Vo		commended value	-2.5	-	0	V	Vo
Supply voltage (3)	V_{1}		commended value	2/9•V5	-	VDD	V	V1
Supply voltage (4)	V4		ommended value	V_{5}	-	7/9.V5	V	V4
"H" input voltage (1)	VIH	$\mathrm{Vss}=-2.7 \mathrm{~V}$ to -5.5 V		0.2 Vss	-	0	V	DIO1, DIO2, YSCL, SHL, FR
"L" input voltage (1)	VIL			Vss	-	0.8 Vss	V	
"H" input voltage (2)	VIHT	$\mathrm{Vss}=-2.7 \mathrm{~V}$ to -5.5 V		0.2 Vss	-	0	V	$\overline{\text { DOFF, }}$, $\overline{\mathrm{NH}}$
"L" input voltage (2)	VILT			Vss	-	0.85 Vss	V	
"H" output voltage	VOH		$\begin{aligned} & 3 \mathrm{~mA} \\ & 2 \mathrm{~mA} \\ & 2.7 \text { to }-4.5 \mathrm{~V}) \end{aligned}$	-0.4	-	0	V	DIO1, DIO2
"L" output voltage	Vol	$\begin{aligned} & \hline \mathrm{lOL}=+0 . \\ & \mathrm{lOL}=+0 . \\ & \text { (VSS=- } \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \mathrm{~mA} \\ & 2 \mathrm{~mA} \\ & 2.7 \text { to }-4.5 \mathrm{~V}) \end{aligned}$	Vss	-	Vss+0.4	V	
Input leakage current Input/output leakage current	ILI	$\mathrm{Vss} \leq \mathrm{VIN} \leq 0 \mathrm{~V}$		-	-	2.0	$\mu \mathrm{A}$	$\frac{\text { YSCL }}{\mathrm{DOFF}}, \frac{\mathrm{SHL}}{\mathrm{INH}, \mathrm{FR}}$
Static current	ILI/O	$\mathrm{VSS} \leq \mathrm{VIN} \leq 0 \mathrm{~V}$		-	-	5.0	$\mu \mathrm{A}$	DIO1, DIO2
	IdDS	$\begin{aligned} & \mathrm{V}_{5}=-7.0 \text { to }-28.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{VDD}, \mathrm{~V} \mathrm{~V}=\mathrm{VsS} \end{aligned}$		-	-	25	$\mu \mathrm{A}$	VDD
Output resistance	Rcom	$\begin{aligned} & \Delta \mathrm{VON} \\ & =0.5 \mathrm{~V} \end{aligned}$	When the $V_{5}=$ V_{1}, V_{4}, V_{0} or -20.0 V V_{5} level is output	-	0.70	1.40	$\mathrm{K} \Omega$	COM0~COM99
Average operating current consumption (1)	ISS1	Vss=- VIL=Vs Frame Input d every Öther as Vss	$\begin{aligned} & \text { OV, VIH=VDD, } \\ & \text {, fYSCL=12KHz, } \\ & \text { requency }=60 \mathrm{~Hz} \\ & \text { ata; "H" at no load } \\ & \text { 200 duty } \\ & \text { onditions are the same } \\ & =-3.0 \mathrm{~V} \end{aligned}$	-	7 -	15 - 10	$\mu \mathrm{A}$	Vss
Average operating current consumption (2)	ISS2	Vss=- $\mathrm{V}_{4}=-18$ Other as in th	$\begin{aligned} & .0, \mathrm{~V},=-2.0 \mathrm{~V}, \\ & 0 \mathrm{~V}, \mathrm{~V} 5=-20.0 \mathrm{~V} \end{aligned}$ onditions are the same item of ISS1.	-	7	15	$\mu \mathrm{A}$	V5
Input pin capacitance	Cl	Ta=25 ${ }^{\circ} \mathrm{C}$		-	-	8	pF	$\frac{\mathrm{YSCL}}{\mathrm{DOFF}}, \frac{\mathrm{SHL}}{\mathrm{INH}}, \mathrm{FR}$
Input/output pin capacitance	CI/O			-	-	15	pF	DIO1, DIO2

- DIFFERENT POINTS FROM REPLACEMENT PRODUCT

	SED1670*0*	SED1631 ${ }^{*_{* *}}$
Function	Bidirectional shift register	$\frac{\mathrm{INH}}{}-100$ output segments
Output Tr configuration	100 output segments	Fig. 2
PAD layout	Fig. 1	-
PAD coordinates	Identical to the equivalent product	-

	SED1670*1*	SED1635****
Function	Bidirectional shift register	$\overline{\text { DOFF }}$
	100 output segments	Bidirectional shift register
DOFF		
Output Tr configuration	Fig. 1	Fig. 2
PAD layout	Identical to the equivalent product	-
PAD coordinates	Different from the equivalent product	-

Fig. 1

Flg. 2Θ

NOTICE:
No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Morever, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain techonology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.
© Seiko Epson Corporation 1996 All right reserved.

SEIKO EPSON CORPORATION

ELECTRONIC DEVICE MARKETING DEPARTMENT
IC Marketing \& Engineering Group
421-8 Hino, Hino-shi, Tokyo 191, JAPAN
Phone: 0425-87-5816 FAX: 0425-87-5624

International Marketing Department I (Europe, U.S.A.)
421-8 Hino, Hino-shi, Tokyo 191, JAPAN
Phone: 0425-87-5812 FAX: 0425-87-5564
International Marketing Department II (Asia)
421-8 Hino, Hino-shi, Tokyo 191, JAPAN
Phone: 0425-87-5814 FAX: 0425-87-5110

