

General Purpose 70 MHz, DC Coupled VGA

Preliminary Technical Data

AD8336

FEATURES

Low Noise

Voltage noise = 3.2 nV/√Hz

Current noise = 3 pA/√Hz

Wide Bandwidth (-3 dB) = 100 MHz

Large Signal BW (2V p-p) = 70 MHz

Slew Rate 450V/µs, 2Vp-p

Gain Ranges (specified)

-14 to +46 dB, 0 to 60 dB

Gain Scaling

50 dB/V

DC Coupled

Single Ended Input and Output

APPLICATIONS

Supplies: ±3V to ±12V Low power: 150 mW @ ±3V

Industrial Process Controls
High performance AGC systems
I/Q signal processing
Video
Industrial and Medical Ultrasound
Radar Receivers

GENERAL DESCRIPTION

The AD8336 is a low noise single ended linear-in-dB, general purpose variable gain amplifier usable as a low noise variable gain element over a large supply voltage range. For example, at ± 5 V supplies, the part can be used for frequencies up to 70 MHz (2Vpp); the -3 dB bandwidth is 100 MHz; these values are for the lowest gain range (-14 to +46 dB).

The VGA has 60 dB of gain range and is intended for a broad spectrum of applications. Excellent bandwidth uniformity is maintained across the entire range. The gain control interface provides precise linear-in-dB scaling of 50 dB/V. Since the gain control input is differential it is easy to interface the gain control voltage to a variety of external circuits as long as they are within the devices' common voltage range.

The large voltage range makes the AD8336 particularly suited for industrial, medical, and for video applications. Dual supply

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

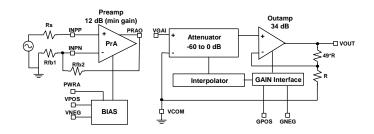


Figure 1. AD8336 Functional Block Diagram and Pinout

operation enables gain control of negative-going pulses such as generated by photodiodes or photo-multiplier tubes. The AD8336 has an op-amp at its input which allows both inverting and non-inverting topologies and thereby a dual polarity VGA. The part can be used within the specified gain range of -14 to +46 dB by selecting the appropriate preamp gain from a minimum of 12 dB to a maximum of 26 dB. This is accomplished by simply choosing the correct feedback resistors.

The part also contains a power adjust pin, PWRA, with which the quiescent power of the part can be reduced by a factor of roughly two. This is especially useful for the highest supply voltage of ± 12 V and at high temperatures, plus if the highest speed operation is not required.

The operating temperature range is -40° C to $+125^{\circ}$ C. The AD8336 is available in a 16 lead LFCSP (4x4 mm).

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2006 Analog Devices, Inc. All rights reserved.

AD8336

Preliminary Technical Data

TABLE OF CONTENTS

AD8336—Specifications	ESD CAUTION
Absolute Maximum Ratings5	Pin Configuration and Functional Descriptions

REVISION HISTORY

Rev. PrA

AD8336—SPECIFICATIONS

Table 1. $V_S = \pm 5 V$, $T_A = -55$ to +125°C, Gain Range = -14 to +46 dB, PrA Gain = +12 dB, f = 5 MHz, $C_L = 5$ pF, $R_L = 500 \Omega$, PWRA = GND unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Unit
GENERAL PARAMETERS					
-3 dB Small Signal Bandwidth	$V_{OUT} = 10 \text{ mV p-p}$		100		MHz
–3 dB Large Signal Bandwidth	V _{OUT} = 2 V p-p		70		MHz
Slew Rate	V _{OUT} = 2 V p-p		450		V/µs
Input Voltage Noise			3.0		nV/√Hz
Input Current Noise			TBD		pA/√H:
Output-Referred Noise	$V_{GAIN} = 0.7 \text{ V } (Gain = +46 \text{ dB})$		600		nV/√Hz
·	$V_{GAIN} = -0.7 \text{ V (Gain} = -14 \text{ dB)}$		190		nV/√Hz
Output Impedance	DC to 10 MHz		1		Ω
Output Signal Range	$R_L \ge 500 \Omega$ (for $ V_{SUPPLY} < 5V$); $R_L \ge 1 \text{ k}\Omega$ above that		V _{SUPPLY} - 2		V
Output Offset Voltage	$V_{GAIN} = 0.7 \text{ V } (Gain = +46 \text{ dB})$	Min	±50	Max	mV
DYNAMIC PERFORMANCE	Tomic on Countries			111671	
Harmonic Distortion	V _{GAIN} = 0V, V _{OUT} = 1 Vpp				
HD2	f = 1 MHz		TBD		dBc
HD3	1 – 1 1811 12		TBD		dBc
HD2	f = 10 MHz		TBD		dBc
HD3	1 = 10 MHZ		TBD		dBc
	V 07V f 10MH-		TBD		
Output 1 dB Compression Point	$V_{GAIN} = -0.7 \text{ V, } f = 10 \text{ MHz}$				dBm ¹
T T 1.	$V_{GAIN} = +0.7 \text{ V, } f = 10 \text{ MHz}$		TBD		dBm
Two-Tone Intermodulation Distortion (IMD3)	$V_{GAIN} = 0 \text{ V}, V_{OUT} = 1 \text{ Vpp}, f_1 = 1 \text{ MHz}, f_2 = 1.1 \text{ MHz}$		TBD		dBc
Distortion (IIVID3)	$V_{GAIN} = 0$, $V_{OUT} = 1$ Vpp, $f_1 = 10$ MHz, $f_2 = 11$ MHz		TBD		dBc
	$V_{GAIN} = 0$, $V_{OUT} = 2$ Vpp, $f_1 = 1$ MHz, $f_2 = 1.1$ MHz		TBD		dBc
	$V_{GAIN} = 0$, $V_{OUT} = 2 \text{ Vpp}$, $f_1 = 10 \text{ MHz}$, $f_2 = 11 \text{ MHz}$		TBD		dBc
Output Third Order Intercept	$V_{GAIN} = 0$, $V_{OUT} = 1$ Vpp , $f = 1$ MHz		TBD		dBm
	$V_{GAIN} = 0$, $V_{OUT} = 1$ Vpp, $f = 10$ MHz		TBD		dBm
	$V_{GAIN} = 0$, $V_{OUT} = 2$ Vpp , $f = 1$ MHz		TBD		dBm
	$V_{GAIN} = 0$, $V_{OUT} = 2$ Vpp, $f = 10$ MHz		TBD		dBm
Overload Recovery	$V_{GAIN} = 0.7 \text{ V}, V_{IN} = \text{TBD mV p-p}$		TBD		ns
Group Delay Variation	1 MHz < f < 10 MHz, Full Gain Range		±3		ns
ACCURACY					
Absolute Gain Error ²	-0.7 V < V _{GAIN} < -0.6V	Min	TBD	Max	dB
	$-0.6 \text{ V} < \text{V}_{\text{GAIN}} < 0.6 \text{ V}$	Min	±0.3	Max	dB
	$0.6 \text{ V} < V_{GAIN} < 0.7 \text{V}$	Min	TBD	Max	dB
Gain Law Conformance ³	-0.6 V < V _{GAIN} < 0.6 V, over temperature	N/A	N/A	N/A	dB
GAIN CONTROL INTERFACE					
Gain Scaling Factor			50		dB/V
Gain Range		Min	60	Max	dB
Input Voltage (V _{GAIN}) Range	No foldover	-V _s		+V _s	V
Input Impedance			TBD		ΜΩ
Response Time	60 dB Gain Change		TBD		ns
POWER SUPPLY				1	
Supply Voltage Operating Range		±3		±12	V
Quiescent Current	Vsupply between \pm 3 V and \pm 5 V	Min	25	Max	mA
Power Dissipation	Vsupply $= \pm 3 \text{ V}$	141111	150	IVIGA	mW
POWAR Discipation					

 $^{^{\}mbox{\tiny 1}}$ All dBm values are calculated with 50 Ω reference, unless otherwise noted.

² Conformance to theoretical gain expression (see Equation 1).

³ Conformance to best fit dB linear curve.

AD8336

Preliminary Technical Data

Parameter	Conditions	Min	Тур	Max	Unit
Quiescent Current	$Vsupply = \pm 12 V$		28		mA
Power Dissipation	$Vsupply = \pm 12 V$		670		mW
PSRR	$V_{GAIN} = 0.7 \text{ V, } f = 10 \text{ MHz}$		TBD		dB

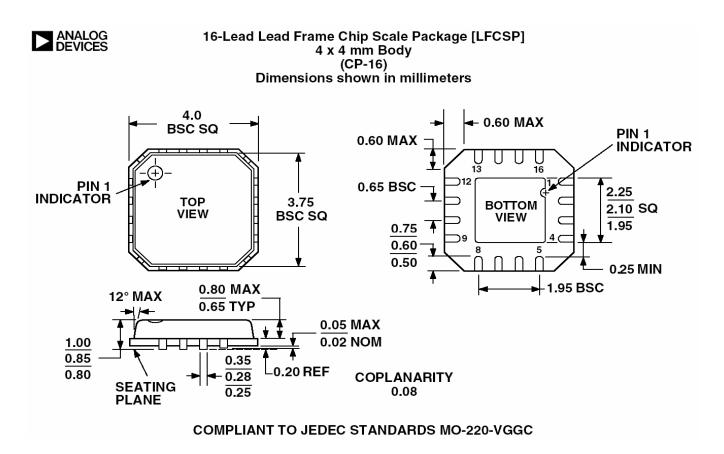

ABSOLUTE MAXIMUM RATINGS

Table 2. Absolute Maximum Ratings

Tuble 2. Hosbitate Maximum Ratings		
Parameter	Rating	
Voltage		
Supply Voltage (VPOS, VNEG)	±13V	
Input Voltage (INPx)	TBD V	
GAIN Voltage	VPOS, VNEG	
Power Dissipation	TBD W	
Temperature		
Operating Temperature	-40°C to +125°C	
Storage Temperature	−65°C to +150°C	
Lead Temperature (Soldering 60 sec)	300°C	
θ _{JA}		
16-LFCSP (4 x 4 mm) Package ⁴	58°C/W	

Stresses above those listed under the Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

⁴ Four-Layer JEDEC Board (2S2P).

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTIONAL DESCRIPTIONS

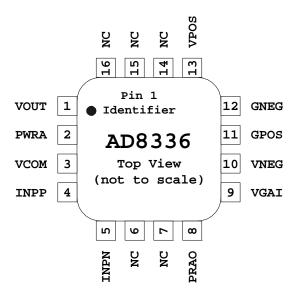


Figure 1. 16 LFCSP

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Function
1	VOUT	Output Voltage
2	PWRA	Power Control, allows quiescent power to be reduced by a factor-of-two
3	VCOM	Commom-Mode Voltage (Normally GND when using a dual supply)
4	INPP	Positive Input to Preamp
5	INPN	Negative Input to Preamp
6	NC	No Connect
7	NC	No Connect
8	PRAO	Preamp Output
9	VGAI	VGA Input
10	VNEG	Negative Supply
11	GPOS	Positive Gain Control Input
12	GNEG	Negative Gain Control Input
13	VPOS	Positive Supply
14	NC	No Connect
15	NC	No Connect
16	NC	No Connect