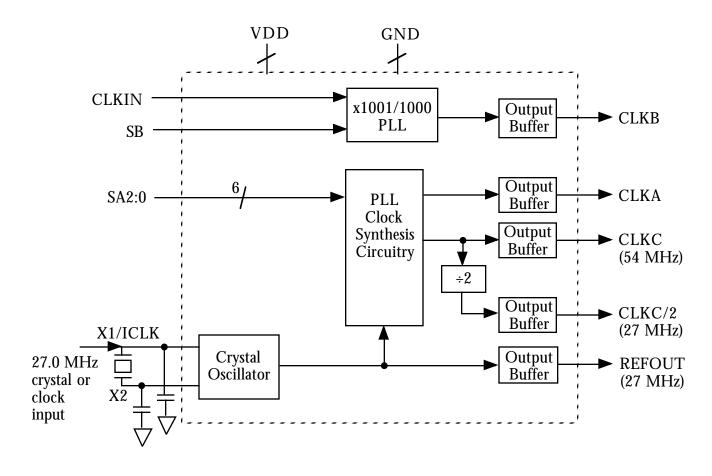


ICS627-01 HDTV Set-Top Clock Source

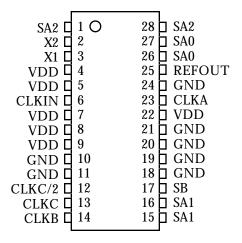

Description

The ICS627-01 is a low cost, low jitter, high performance clock synthesizer which can generate frequencies required for HDTV receivers and settop boxes. Using ICS's patented analog/digital Phase-Locked Loop (PLL) techniques, the device uses an inexpensive fundamental 27 MHz crystal input to produce low jitter HDTV pixel clocks. It has a separate input for a 1001/1000 or 2(1001/1000) conversion from a 13.5 MHz, 27 MHz or 54 MHz input.

Features

- Packaged in 28 pin SSOP (QSOP)
- HDTV frequencies of 74.25 and 74.175824 MHz
- Provides selectable B clock for 27.027 MHz or other 1001/1000
- Uses a fundamental 27 MHz crystal or clock input
- All frequencies are generated exactly (zero ppm synthesis error)
- Full CMOS output swings with 12 mA output drive capability at TTL levels
- Advanced, low power, sub-micron CMOS process
- 3.3 V ±5% operating supply

Block Diagram



PRELIMINARY INFORMATION

ICS627-01 HDTV Set-Top Clock Source

Pin Assignment

CLKA/CLKC Select Table (MHz)

SA2	SA1	SA0	Input	CLKA	CLKC	CLKC/2
0	0	0	27.0	108.0	54.0	27.0
0	0	1	27.0	74.175824*	TEST	TEST
0	1	0	27.0	54.0	54.0	27.0
0	1	1	27.0	74.25*	54.0	27.0
1	0	0	TEST			
1	0	1	27.0	74.175824	54.0	27.0
1	1	0	TEST			
1	1	1	27.0	74.250	54.0	27.0

^{*} These selections are recommended for the lowest jitter

CLKB Select Table (MHz)

SB	CLKIN	CLKB	Multiplier
0	13.5	27.027	2002/1000
1	27 - 54	27.027 - 54.054	1001/1000

0 = connect directly to GND

1 = connect directl to VDD

Pin Descriptions

Number	Name	Туре	Description	
1, 28	SA2	I	Pins 1, 28 should be connected together. Selects CLKA and CLKC frequencies. Internal p-u.	
2	X2	XO	Connect to a fundamental 27.0 MHz crystal or leave unconnected for clock.	
3	X1/ICLK	XI	Connect to a fundamental 27.0 MHz crystal or clock input.	
4, 5, 7-9, 22	VDD	P	Connect to 3.3V.	
6	CLKIN	CI	Clock input to produce 1001/1000 or 2(1001/1000) at CLKB. See table above.	
10, 11, 18, 19	GND	P	Connect to ground.	
12	CLKC/2	О	C Clock output divided-by-2. See table above.	
13	CLKC	O	C Clock output. See above table.	
14	CLKB	O	B Clock output. See above table.	
15, 16	SA1	I	Pins 15, 16 should be connected together. Selects CLKA and CLKC frequencies. Internal p-u.	
17	SB	I	B Clock Select. Selects CLKB frequency. See above table. Internal pull-up.	
20, 21, 24	GND	P	Connect to ground.	
23	CLKA	О	A Clock output. See above table.	
25	REFOUT	O	27 MHz Reference Output.	
26, 27	SA0	I	Pins 26, 27 should be connected together. Selects CLKA and CLKC frequencies. Internal p-u.	

Key: I = Input; O = output; P = power supply connection; XI, XO = crystal connections; CI = clock input

PRELIMINARY INFORMATION

ICS627-01 HDTV Set-Top Clock Source

Electrical Specifications

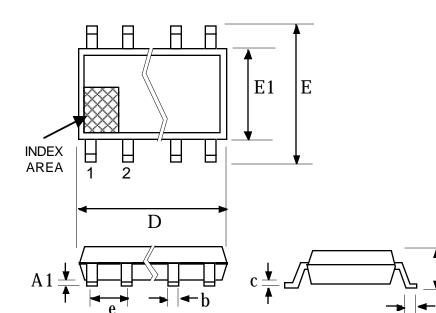
Parameter	Conditions	Minimum	Typical	Maximum	Units		
ABSOLUTE MAXIMUM RATINGS (note 1)							
Supply voltage, VDD	Referenced to GND			7	V		
Inputs and Clock Outputs	Referenced to GND	-0.5		VDD+0.5	V		
Ambient Operating Temperature		0		70	°C		
Soldering Temperature	Max of 10 seconds			260	°C		
Storage temperature		-65		150	°C		
DC CHARACTERISTICS (VDD = 3.3	3V unless noted)						
Operating Voltage, VDD		3.15	3.30	3.45	V		
Input High Voltage, VIH		2			V		
Input Low Voltage, VIL				0.8	V		
Input High Voltage, VIH, ICLK and CLKIN		(VDD/2)+1	VDD/2		V		
Input Low Voltage, VIL, ICLK and CLKIN			VDD/2	(VDD/2)-1	V		
Output High Voltage, VOH	IOH=-12mA	2.4			V		
Output Low Voltage, VOL	IOL=12mA			0.4	V		
Output High Voltage, VOH, CMOS level	IOH=-8mA	VDD-0.4			V		
Operating Supply Current, IDD	No Load, note 2		TBD		mA		
Short Circuit Current	Each output		±50		mA		
Input Capacitance			7		pF		
Frequency synthesis error	All clocks			0	ppm		
AC CHARACTERISTICS (VDD = 3.3	SV unless noted)						
Input Frequency			27.0		MHz		
Output Clock Rise Time	0.8 to 2.0V			1.5	ns		
Output Clock Fall Time	2.0 to 0.8V			1.5	ns		
Output Clock Duty Cycle	At VDD/2	40		60	%		
Maximum Absolute Jitter, short term			TBD		ps		

Notes:

- 1. Stresses beyond those listed under Absolute Maximum Ratings could cause permanent damage to the device. Prolonged exposure to levels above the operating limits but below the Absolute Maximums may affect device reliability.
- 2. With all clocks at highest MHz.

External Components

The ICS627-01 requires a minimum number of external components for proper operation. Use a low inductance ground plane, connect all GNDs to this. Connect $0.01\mu F$ decoupling caps across pins 5 and 10, 8 and 10, and 22 and 20, as close to the ICS627-01 as possible. A series termination resistor of 33 Ω may be used for each clock output. The 27.000 MHz crystal must be connected as close to the chip as possible. The crystal should be a fundamental mode, parallel resonant. Crystal capacitors should be connected from pins X1 to ground and X2 to ground. The value of these capacitors is given by the following equation, where C_L is the crystal load capacitance: Crystal caps (pF) = (C_L -6) x 2. So for a crystal with 16pF load capacitance, two 20pF caps should be used. If a clock input is used, drive it into X1 and leave X2 unconnected.



PRELIMINARY INFORMATION

ICS627-01 HDTV Set-Top Clock Source

Package Outline and Package Dimensions

(For current dimensional specifications, see JEDEC Publication No. 95.)

28 pin SSOP

	Inch	es	Millin	Millimeters		
Symbol	Min	Max	Min	Max		
Α	0.053	0.069	1.35	1.75		
A1	0.004	0.010	0.10	0.25		
b	0.008	0.012	0.20	0.30		
С	0.007	0.010	0.19	0.25		
D	0.386	0.394	9.80	10.01		
e	.025 BSC		0.635 H			
E	0.228	0.244	5.79	6.20		
E1	0.150	0.157	3.81	3.99		
L	0.016	0.050	0.41	1.27		

Ordering Information

Part/Order Number	Marking	Shipping packaging	Package	Temperature
ICS627R-01	ICS627R-01	tubes	28 pin SSOP (QSOP)	0-70 °C
ICS627R-01T	ICS627R-01	tape and reel	28 pin SSOP (QSOP)	0-70 °C

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICs. ICs reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.