January 1990 Edition 1.1

PRODUCT PROFILE

2SC3178, 2SC3059, 2SC3060, 2SC3061

Silicon High Speed Power Transistor

DESCRIPTION

This series are silicon NPN planer general purpose, high power switching transistors fabricated with Fujitsu's unique Ring Emitter Transistor (RET) technology. RET devices are constructed with multiple emitters connected through ballast resistors which provide uniform current density. This structure permits the design of high power transistors with superior switching characteristics and frequency response in high current applications.

This series are especially well-suited for high speed/high voltage switching systems or other applications where large SOA is required,

Features

Applications

- High voltage
- Switching regulators Motor controls
- Ultra-fast switching • Large safe operating area
- Ultrasonic oscillators Class C and D amplifiers
- Deflection circuits

Outline of the Series

į.

Item	Symbol	2SC3178	2SC3059	2SC3060	2SC3061	Unit
Collector to Base Breakdown Voltage	V _{CBO}		12	00		v
Collector to Emitter Breakdown Voltage	V _{CEO}	V _{CEO} 850		v		
Emitter to Base Breakdown Voltage	V _{EBO}		7			>
Collector Current (continuous)	lc 2	2	5	10	Α	
Collector Current (pulsed)	1 _{CP}	4	,	8	20	Α
Collector Power Dissipation	Pc	60	100	150	200	w
Reverse Bias Safe Operating Area @ 900V	RBSOA	2.	5	5	7	A
Rise Time (Typ.)	t,	0.20		L	μs	
Storage Time (Typ.)	t _{stg}	2.50			μs	
Fall Time (Typ.)	t _f	0.07		μs		
Collector to Emitter Saturation Voltage (Typ.)	V _{CE(sat)}		0.	3		V
Base to Emitter Saturation Voltage (Typ.)	V _{BE(sat)}		1.	0		v
Package	_	TO-220		TO-3		-

Copyright@ 1990 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

1-93

T-33-01

FUJITSU

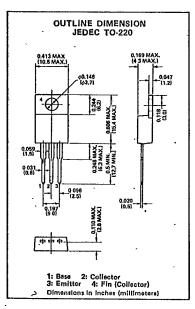
FUJITSU MICROELECTRONICS

31E D 🛤 3749762 0016591 2 🛤 FMI

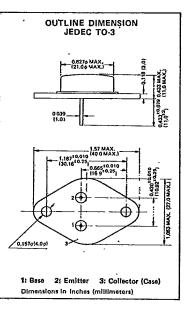
T-33-01

---- -----

2SC3178, 2SC3059, 2SC3060, 2SC3061


OUTLINE DIMENSION

.

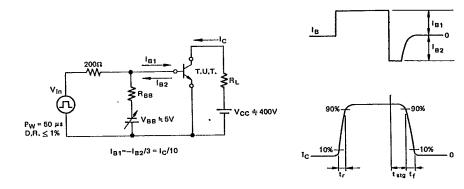


244

2\$C3178

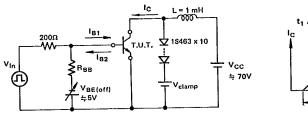
2SC3059 2SC3060 2SC3061

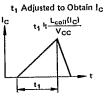
1–94


•**

ليعا بالالال 31E D 🖼 3749762 0016592 4 🖬 FMI FUJITSU MICROELECTRONICS

T-33-01


2SC3178, 2SC3059, 2SC3060, 2SC3061


TEST CIRCUIT USED FOR MEASUREMENT OF SWITCHING TIME (RESISTIVE)

TEST CIRCUIT USED FOR MEASUREMENT OF VCEX (SUS) AND REVERSE BIAS SAFE OPERATING AREA

VCEX (SUS)

· L. L. DERRIGHTER

Type No.	I _C (A)	I _{B2} (A)	$R_{BB}(\Omega)$
2SC3178			20
2SC3059	2.5 -0.3	-0.3	20
2SC3060	5,0	-0.6	10
2SC3061	7.0	-1.2	5

V clamp = 900V

REVERSE BIAS SAFE	OPERATING	AREA
-------------------	-----------	------

Type No,	IB2(A)	R ₈₈ (Ω)
2SC3178		20
25C3059	-0.3	20
2SC3060	-0.6	10
2\$C3061	-1.2	5

- -

1-95

1–96

FUJITSU MICROELECTRONICS

31E D 🜌 3749762 0016594 8 🖼 FMI

FUĴÎTSU

T-33-01

January 1990 Edition 1.1

PRODUCT PROFILE

2SC3178

Silicon High Speed Power Transistor

ABSOLUTE MAXIMUM RATINGS

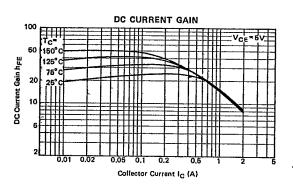
Rating	Symbol	Value	Unit
Collector to Emitter Voltage	V _{CEO}	850	v
Collector to Base Voltage	Vcso	1200	v
Emitter to Base Voltage	V _{EBO}	7	v
Collector Current-Continuous	Ι _c	2	А
Collector Current-Pulsed $P_W \leq 25 \ \mu$ s, D.R. $\leq 50\%$	I _{CP}	4	A
Base Current-Continuous	Ι _B	1	A
Collector Power Dissipation ($T_c = 25^{\circ}C$)	Pc	60	w
Junction Temperature	Т	+150	°C
Storage Temperature Range	T _{stg}	-55~+150	°c

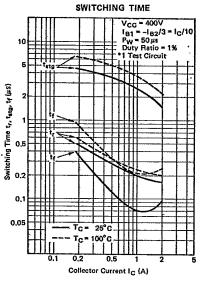
ELECTRICAL CHARACTERISTICS (Ta = 25°C)

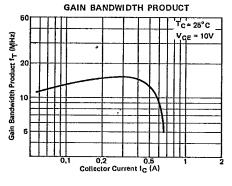
		Devision Test Conditions		Limit		Unit	
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Onic	
Collector to Base Breakdown Voltage	V _(BR) CBÓ	I _C = 1mA, I _E = 0	1200	-	-	v	
Emitter to Base Breakdown Voltage	V _(BR) EBO	l _E = 1mA, I _C = 0	7		_	v	
Collector to Emitter Sustaining Voltage	V _(BR) CEO	l _c = 10mA, R _{BE} =∞Ω	850	-		V	
Collector to Emitter Sustaining Voltage	V _{CEX} (SUS)	I _C =2.5A, I _{B2} =-0.3A, L=1mH(*1)	900	_	-	V	
Collector Cutoff Current	I _{CBO}	V _{CB} = 1000V, I _E = 0	1	-	100	μA	
Collector Cutoff Current	I _{CBÓ}	$V_{CB} = 1000V, I_E = 0, T_C = 100^{\circ}C$	-	-	1	mA	
Emitter Cutoff Current	I _{EBO}	$V_{EB} = 6V, I_{C} = 0$		-	100	μA	
DC Current Gain	h _{FE}	$V_{CE} = 5V, I_{C} = 1A$ (*2)	10	15	30		
Collector to Emitter Saturation Voltage	V _{CE} (sat)	$ -10 -0.20 ^{2}$		0.3	1.5	V	
Base to Emitter Saturation Voltage	V _{BE} (sat)	$V_{EB} = 6V, I_{C} = 0$ $V_{CE} = 5V, I_{C} = 1A (*2)$ $I_{C} = 1A, I_{B} = 0.2A (*2)$		1.0	2.0	V	
Output Capacitance	Cob	V _{CB} = 10V, I _E = 0, f = 1MHz	-	60		pF	
Gain Bandwidth Product	f _T	V _{CE} = 10V, I _C = 0.2A	-	15	_	MHz	
Rise Time	t,		-	0.2	0.5	μs	
Storage Time	t _{stg}	V _{CC} = 400V (*1) I _C = 1A, 31 _{B1} =I _{B2} = 0.3A	-	2.5	3,5	μs	
Fall Time	t _f		-	0.07	0.3	μs	

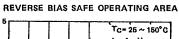
Copyright@ 1990 by FUJITSU LIMITED and Fujitau Microelectronics, inc.

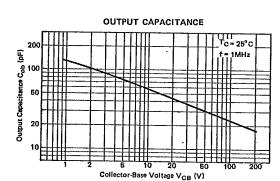
.1-97


المحاج والمرومات المهولة والمواسيات


يكه من به كان

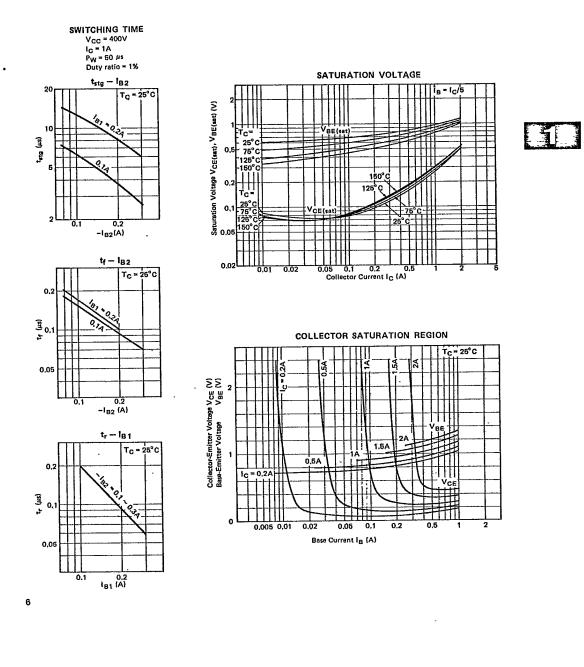

-


T-33-01


2SC3178



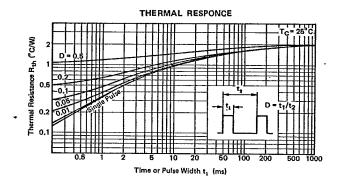
an anonyce was a sport to be warned pointed


:

1–98

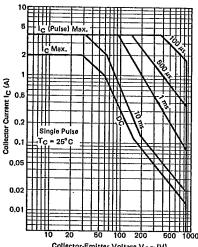
4++++

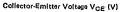
T-33-01

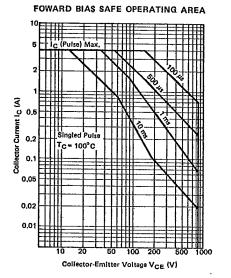


1-99

Section of the sector of the s


7-33-01


2SC3178



January 1990 Edition 1.1

PRODUCT PROFILE

2SC3059

Silicon High Speed Power Transistor

T-33-01

FUĴITSU

ABSOLUTE MAXIMUM RATINGS

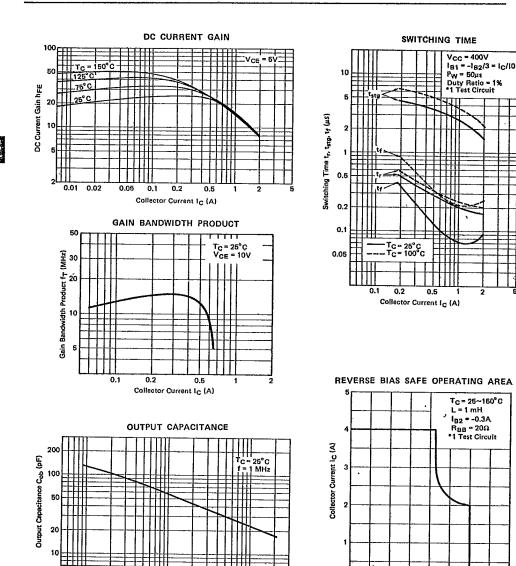
Rating	Symbol	Value	Unit
Collector to Emitter Voltage	Vceo	850	v
Collector to Base Voltage	V _{сво}	1200	V
Emitter to Base Voltage	VEBO	7	v
Collector Current-Continuous	lc	2	Α
Collector Current-Pulsed $P_W \leq 25 \mu s$, D.R. $\leq 50\%$	I _{CP}	4	A
Base Current-Continuous	l ₈	1	A
Collector Power Dissipation (T _C = 25°C)	Pc	100	w
Junction Temperature	Тј	+175	°c
Storage Temperature Range	Tstg	65~+175	°C

ELECTRICAL CHARACTERISTICS (T_a = 25°C)

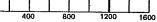
	Gumbal	Test Conditions		Limit		Unit
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	
Collector to Base Breakdown Voltage	V _(ВR) сво	$I_{C} = 1 m A, I_{E} = 0$	1200		-	v
Emitter to Base Breakdown Voltage	V _(вп) ево	$I_E = 1 m A_r I_C = 0$	7	-	-	v
Collector to Emitter Sustaining Voltage	V(BR)CEO	l _c = 10mA, R _{8E} = ∞Ω	850	-	-	v
Collector to Emitter Sustaining Voltage	V _{CEX} (SUS)	I _C =2.5A, I _{B2} =-0.3A, L=1mH(*1)	900	-	-	v
Collector Cutoff Current	I _{CBO}	V _{CB} = 1000V, 1 _E = 0		-	100	μA
Collector Cutoff Current	I _{CBO}	$V_{CB} = 1000V, I_E = 0, T_C = 100^{\circ}C$	-	-	1	mA.
Emitter Cutoff Current	I _{EBO}	$V_{EB} = 6V, I_{C} = 0$	-		100	μA
DC Current Gain -	hfe	V _{CE} = 5V, I _C = 1A (*2)	10	15	30	-
Collector to Emitter Saturation Voltage	V _{CE} (sat)		-	0.3	1.5	v
Base to Emitter Saturation Voltage	V _{BE} (sat)	$l_{\rm C} = 1$ A, $l_{\rm B} = 0.2$ A (*2)	-	1.0	2.0	v
Output Capacitance	Cob	V _{CB} = 10V, I _E 0, f = 1MHz	-	60	-	PF
Gain Bandwidth Product	f _T	V _{CE} = 10V, I _C ≍ 0.2A		15	-	MHz
Rise Time	tr		-	0.2	0.5	μs
Storage Time	t _{stg}	V _{CC} = 400V (*1) I _C = 1A, 3I _{B1} = -I _{B2} = 0.3A	-	2.5	3.5	μs
Fall Time	t _f		-	0.07	0.3	μs

*1 Test Circuit *2 Pulsed $P_{W} \leq 300 \ \mu s$, Duty Ratio $\leq 6\%$

Copyright@ 1990 by FUNTSU LIMITED and Fujitau Microelectronics, Inc.


.

1–101


2SC3059

R.

5

100 200

ᅆ

Collector-Emitter Voltage Vclamp (V)

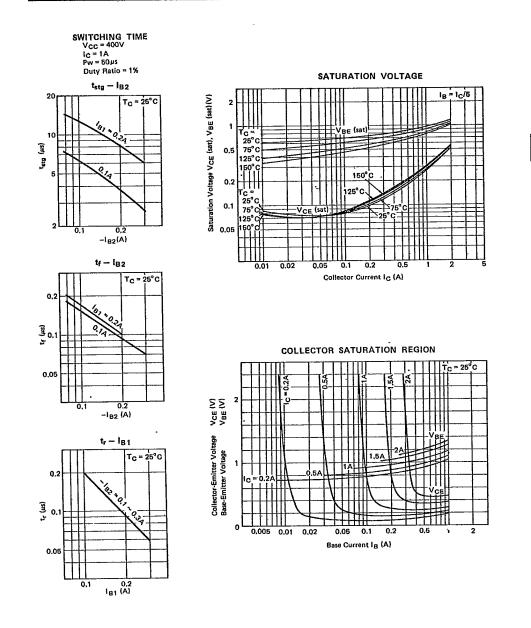
....

1-102

This Material Copyrighted By Its Respective Manufacturer

5 10 20

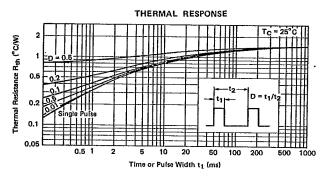
Collector-Base Voltage VCB (V)

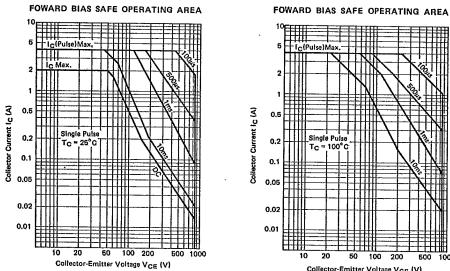

<u>1</u>

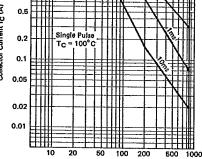
.

T-33-01

5




.


3749762 0016601 1 KM FMI

2SC3059

(Pulse)Max

Collector-Emitter Voltage VCE (V)

1-104

Automot - Marrie a

January 1990 Edition 1.1

PRODUCT PROFILE

2SC3060

Silicon High Speed Power Transistor

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector to Emitter Voltage	VCEO	850	v
Collector to Base Voltage	V _{CBO}	1200	v
Emitter to Base Voltage	V _{EBO}	7	V
Collector Current-Continuous	lc	5	A
Collector Current-Pulsed $P_W \leq 25 \mu s$, D.R. $\leq 50\%$	I _{CP}	8	А
Base Current-Continuous	l _B	3	A
Collector Power Dissipation (T _C = 25°C)	Pc	150	w
Junction Temperature	Ті	+175	°C
Storage Temperature Range	T _{stg}	-65~+175	°c

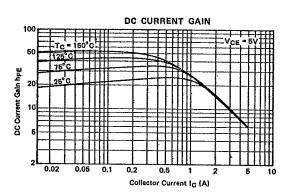
ELECTRICAL CHARACTERISTICS (T_a = 25°C)

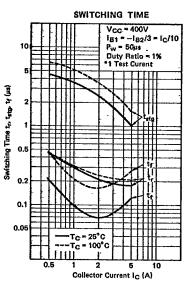
		T . O . Kk		Limit Typ. Max, 100 1 100 15 30 0.3 1.5 1.0 2.0 120 15 0.2 0.5	Unit	
Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	ome
Collector to Base Breakdown Voltage	V _(вя) сво	$I_{C} = 1mA, I_{E} = 0$	1200			v
Emitter to Base Breakdown Voltage	V _(ВR) ЕВО	$I_{E} = 1mA, I_{C} = 0$	7		-	V
Collector to Emitter Sustaining Voltage	V(BR) CEO	I _C = 10mA, R _{BE} = ∞Ω	850	-		v
Collector to Emitter Sustaining Voltage	V _{CEX} (SUS)	$I_{C} = 5A, I_{B2} = -0.6A, L = 1mH(*1)$	900	-	_	V
Collector Cutoff Current	Ісво	V _{CB} = 1000V, I _E = 0			100	μA
Collector Cutoff Current	I _{сво}	$V_{CB} = 1000V, I_E = 0, T_C = 100^{\circ}C$		-	1	mA
Emitter Cutoff Current	I _{EBO}	V _{EB} = 6V, I _C = 0			100	μA
DC Current Gain	h _{FE}	V _{CE} = 5V, I _C = 2A (*2)	10	15	30	_
Collector to Emitter Saturation Voltage	V _{GE} (sat)	$l_{c} = 2A, [n = 0.4A(*2)]$	-	0.3	1.5	v
Base to Emitter Saturation Voltage	V _{BE} (sat)	$I_{\rm C} = 2A, I_{\rm B} = 0.4A + 2I$		1.0	2.0	V
Output Capacitañce	Cob	V _{CB} = 10V, I _E = 0, f = 1MHz	-	120	_	PF
Gain Bandwidth Product	f _T	V _{CE} = 10V, 1 _C = 0,5A		15		MHz
Rīse Time	t,		-	0.2	0.5	μs
Storage Time	t _{stg}	V _{CC} = 400V (*1) I _C = 2A, 3I _{B1} = - I ₈₂ = 0.6A	_	2.5	3.5	μs
Fall Time	tf		-	0.07	0.3	μs

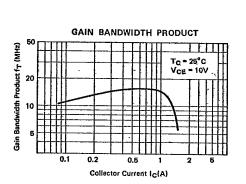
*1 Test Circuit *2 Pulsed $P_W \leq 300 \,\mu s$, Duty Ratio $\leq 6\%$

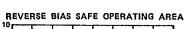
- Copyright © 1990 by FUJITSU LIMITED and Fujitau Microelectronice, Inc.

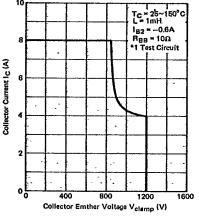
a fairead contract

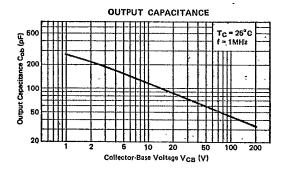

1–105


33-01


Fl


-105


2SC3060



.

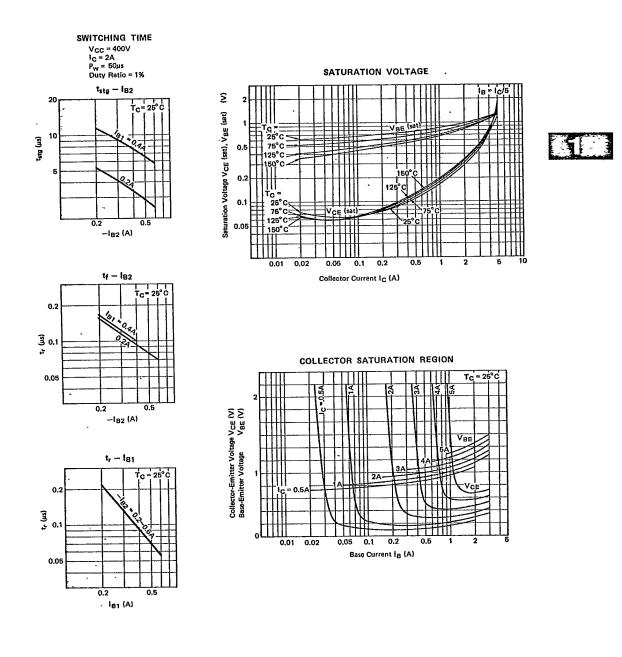
1-106

.

-····· 31E D 🖾 3749762 0016604 7 🔤 FMI FUJITSU MICROELECTRONICS

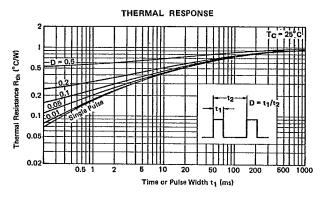
• ---

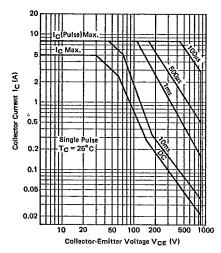
. .



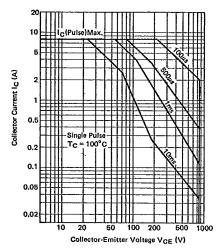
1

۴.


T-33-01



1-107


2SC3060

FORWARD BIAS SAFE OPERATING AREA

1-108

) 🜌 3749762 0016606 0 🖼 FMI

F

T-33-01

5U

January 1990 Edition 1.1

PRODUCT PROFILE

2SC3061

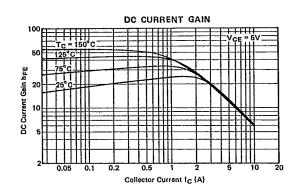
Silicon High Speed Power Transistor

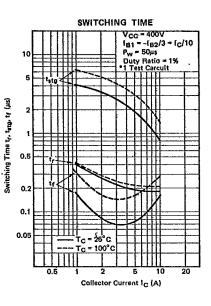
ABSOLUTE MAXIMUM RATINGS

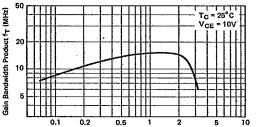
Rating	Symbol	Value	Unit
Collector to Emitter Voltage	V _{CEO}	850	v
Collector to Base Voltage	V _{сво}	1200	v
Emitter to Base Voltage	VEBO	7	v
Collector Current-Continuous	lc	10	А
Collector Current-Pulsed $P_W \leq 25 \mu s$, $D_r R \leq 50\%$	· I _{CP}	20	A
Base Current-Continuous	I _B	5	А
Collector Power Dissipation (T _C = 25°C)	Pc	200	w
Junction Temperature	Tj	+175	°C
Storage Temperature Range	T _{stg}	-65~+175	°C

ELECTRICAL CHARACTERISTICS ($T_a = 25^{\circ}C$)

	0	Test Conditions	Limit Min. Typ. 1200 7 850 900 10 15 0.3	Limit			Unit
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.		
Collector to Base Breakdown Voltage	V _(вя) сво	$I_{C} = 1mA, I_{E} = \bar{0}$	1200	-	_	V	
Emitter to Base Breakdown Voltage	V _(BR) E80	I _E = 1mÅ, I _C = 0	7	-	-	v	
Collector to Emitter Sustaining Voltage	V _(BR) CEO	l _c = 10mA, R _{BE} = ∞Ω	850	-	1	V	
Collector to Emitter Sustaining Voltage	V _{CEX} (sus)	I _C = 7A, I _{B2} = −1.2A, L=1mH(*1)	900	_	-	v	
Collector Cutoff Current	I _{CBO}	V _{CB} = 1000V, I _E = 0	-	-	100	μA	
Collector Cutoff Current	I _{сво}	$V_{CB} = 1000V, I_E = 0, T_C = 100^{\circ}C$	-		1	mΑ	
Emitter Cutoff Current	I _{EBO}	$V_{EB} = 6V, I_{C} = 0$	_		100	μA	
DC Current Gain	h _{FE}	$V_{CE} = 5V, I_{C} = 4A(*2)$	10	15	30		
Collector to Emitter Saturation Voltage	V _{CE} (sat)		-	0.3	1,5	v	
Base to Emitter Saturation Voltage	V _{BE} (sat)	$V_{EB} = 6V, I_{C} = 0$ $V_{CE} = 5V, I_{C} = 4A(*2)$ $I_{C} = 4A, I_{B} = 0.8A(*2)$		1.0	2.0	V	
Output Capacitance	Сав	$V_{CB} = 10V, I_E = 0, f = 1MHz$	-	220	-	PF	
Gain Bandwidth Product	f _T	V _{CE} = 10V, I _C = 1A	-	15	-	MHz	
Rise Time	tr		_	0.2	0.5	μs	
Storage Time	t _{stg}	V _{CB} = 10V, I _E = 0, f = 1MHz	-	2.5	3.5	μs	
Fall Time	tr	10 17 19 181 182 112C		0.07	0,3	μs	

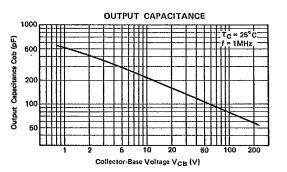

*1 Test Circuit *2 Pulsed $P_W \leq 300 \,\mu$ s, Duty Ratio $\leq 6\%$

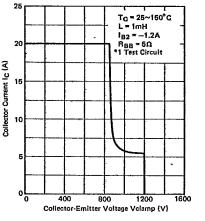

Copyright@ 1990 by FUNTSU LIMITED and Fujitau Microelectronics, Inc.


1-109

.

2SC3061

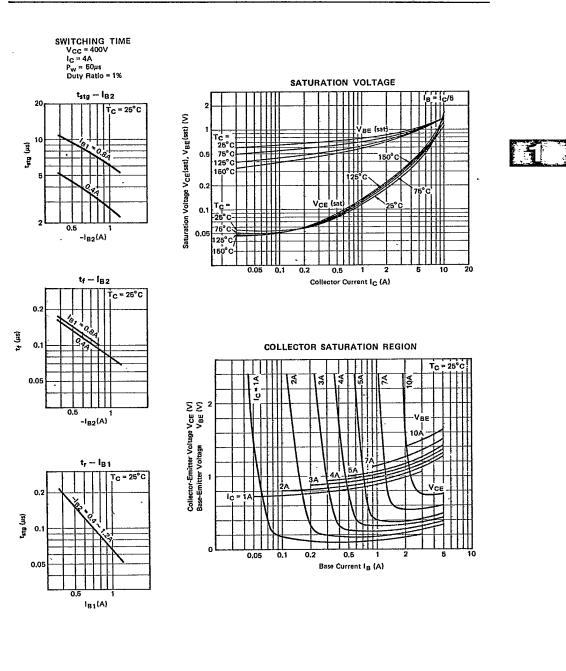



.

GAIN BANDWIDTH PRODUCT

Collector Current Ic (A)

REVERSE BIAS SAFE OPERATING AREA

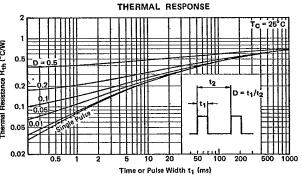

Ċ

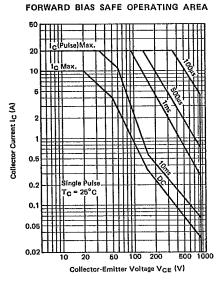
1-110

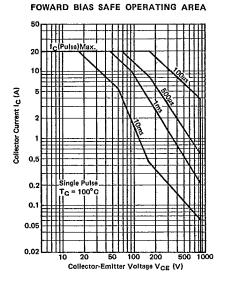
Leroberto, Zan,

🛛 🛤 3749762 0016608 4 🖼 FMI

2SC3061




JTE D


1-111 .

None AF

2SC3061

1-112

Thermal Resistance Rth (°C/W)

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.