74LVC2G53
 2-channel analog multiplexer/demultiplexer

Rev. 01 - 10 January 2006
Product data sheet

1. General description

The 74LVC2G53 is a high-performance, low-power, low-voltage, Si-gate CMOS device that provides superior performance to most advanced CMOS compatible TTL families.

The 74LVC2G53 provides one analog multiplexer/demultiplexer with a digital select input (S), two independent inputs/outputs (B 0 and B 1), a common input/output (A) and an active LOW enable input $(\overline{\mathrm{E}})$. When pin $\overline{\mathrm{E}}$ is HIGH, the switch is turned off.

The 74LVC2G53 can handle both analog and digital signals.

2. Features

■ Wide supply voltage range from 1.65 V to 5.5 V

- Very low ON resistance:
-7.5 Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
-6.5 Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- 6Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- High noise immunity
- ESD protection:
- HBM JESD22-A114-C exceeds 2000 V
- MM JESD22-A115-A exceeds 200 V
- CDM JESD22-C101-C exceeds 1000 V
- CMOS low-power consumption
- Latch-up performance meets requirements of JESD 78 Class I
- Direct interface with TTL levels
- Control inputs accepts voltages up to 5 V
- Multiple package options
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

3. Quick reference data

Table 1: Quick reference data
$G N D=0 \mathrm{~V} ; t_{r}=t_{f} \leq 2.5 \mathrm{~ns}$; minimum and maximum values at $T_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$;
typical values at $T_{a m b}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{t}_{\text {on }}$	turn-on time					
	S to A or Bn	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$				
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	1.8	3.4	5.0	ns
		$\mathrm{V}_{C C}=5.0 \mathrm{~V}$	1.3	2.6	3.8	ns
	\bar{E} to A or Bn	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$				
		$\mathrm{V}_{C C}=3.3 \mathrm{~V}$	1.2	2.2	3.8	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	1.0	1.7	2.6	ns
$\mathrm{t}_{\text {off }}$	turn-off time					
	S to A or Bn	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$				
		$\mathrm{V}_{C C}=3.3 \mathrm{~V}$	1.1	4.0	5.4	ns
		$\mathrm{V}_{C C}=5.0 \mathrm{~V}$	1.0	2.9	3.8	ns
	$\overline{\mathrm{E}}$ to A or Bn	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$				
		$\mathrm{V}_{C C}=3.3 \mathrm{~V}$	2.0	3.7	5.0	ns
		$\mathrm{V}_{C C}=5.0 \mathrm{~V}$	1.3	2.9	3.8	ns
Ci_{i}	input capacitance		-	2.5	-	pF
$\mathrm{C}_{\text {S(OFF) }}$	OFF-state capacitance		-	6.0	-	pF
$\mathrm{C}_{\text {S(ON) }}$	ON-state capacitance		-	18	-	pF

4. Ordering information

Table 2: Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74LVC2G53DC	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1

5. Marking

Table 3: Marking

Type number	Marking code
74LVC2G53DC	V53
74LVC2G53GT	V53

6. Functional diagram

Fig 1. Logic symbol

Fig 2. Logic diagram

7. Pinning information

7.1 Pinning

Fig 3. Pin configuration VSSOP8

Fig 4. Pin configuration XSON8

7.2 Pin description

Table 4: Pin description

Symbol	Pin	Description
A	1	common A output or input
$\overline{\mathrm{E}}$	2	enable input (active LOW)
GND	3	ground $(0 \mathrm{~V})$
GND	4	ground $(0 \mathrm{~V})$
S	5	select input
B1	6	independent B1 input or output
B0	7	independent B0 input or output
V_{CC}	8	supply voltage

8. Functional description

8.1 Function table

Table 5: Function table [1]

Input		Channel on
S	E	
L	L	B0 to A or A to B0
H	L	B1 to A or A to B1
X	H	Z (switch off)
$[1]$	H $=$ HIGH voltage level;	
	L $=$ LOW voltage level;	
	X $=$ don't care;	
	Z	$=$ high-impedance OFF-state.

9. Limiting values

Table 6: Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{C C}$	supply voltage		-0.5	+6.5	V
V	input voltage		[1] -0.5	+6.5	V
I_{K}	input clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{C C}+0.5$	-	-50	mA
$\mathrm{I}_{\text {SK }}$	switch clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5$	-	± 50	mA
$\mathrm{V}_{\text {SW }}$	switch voltage	enable and disable mode	-0.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
ISw	switch current	$\mathrm{V}_{\mathrm{SW}}=-0.5 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\right)$	-	± 50	mA
ICC	quiescent supply current		-	100	mA
$\mathrm{I}_{\text {GND }}$	ground current		-	-100	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	[2] -	300	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] For VSSOP8 package: above $110^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$. For XSON8 package: above $45^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $2.4 \mathrm{~mW} / \mathrm{K}$.

10. Recommended operating conditions

Table 7: Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{CC}	supply voltage		1.65	-	5.5	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	-	5.5	V
$\mathrm{~V}_{\mathrm{SW}}$	switch voltage	enable and disable mode	[1] 0	-	V_{CC}	V
			-40	-	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature					
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.7 V	[2]	0	-	20
n	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	[2]	0	-	10	$\mathrm{~ns} / \mathrm{V}$

[^0]
11. Static characteristics

Table 8: Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground 0 V).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \underline{[1]}$						
V_{IH}	HIGH-state input voltage	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	$0.65 \mathrm{~V}_{\text {cc }}$	-	-	V
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	1.7	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	2.0	-	-	V
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ to 5.5 V	$0.7 \mathrm{~V}_{\mathrm{CC}}$	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-state input voltage	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	-	$0.35 \mathrm{~V}_{\text {cc }}$	V
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	-	0.7	V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	-	0.8	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	-	$0.3 \mathrm{~V}_{\text {cc }}$	V
$l_{\text {LI }}$	input leakage current	on pin S and pin \bar{E}; $\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V} \text { or GND; } \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	± 0.1	± 2	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	per channel; $V_{S W}=G N D$ and $V_{O}=V_{C C}$ or $\mathrm{V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{O}}=\mathrm{GND}$; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; see Figure 5	-	± 0.1	± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	per channel; $\mathrm{V}_{\mathrm{SW}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; see Figure 6	-	± 0.1	± 5	$\mu \mathrm{A}$
$I_{\text {cc }}$	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{SW}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	-	0.1	10	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional quiescent supply current	per input pin; $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SW}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	-	5	500	$\mu \mathrm{A}$
C_{i}	input capacitance		-	2.5	-	pF
$\mathrm{C}_{\text {S(OFF) }}$	OFF-state capacitance		-	6.0	-	pF
$\mathrm{C}_{\text {S(ON) }}$	ON-state capacitance		-	18	-	pF
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$						
V_{IH}	HIGH-state input voltage	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	$0.65 \mathrm{~V}_{\text {cc }}$	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.7	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	2.0	-	-	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	$0.7 \mathrm{~V}_{\mathrm{CC}}$	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-state input voltage	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	-	$0.35 V_{\text {cc }}$	V
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	-	0.7	V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	-	0.8	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V		-	$0.3 \mathrm{~V}_{\mathrm{CC}}$	V
ILI^{\prime}	input leakage current	on pin S and pin \bar{E}; $\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V} \text { or GND; } \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	± 10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	per channel; $\mathrm{V}_{\mathrm{SW}}=\mathrm{GND}$ and $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{O}}=\mathrm{GND}$; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; see Figure 5	-	-	± 20	$\mu \mathrm{A}$

Table 8: Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground 0 V).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	per channel; $\mathrm{V}_{\mathrm{SW}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; see Figure 6	-	-	± 20	$\mu \mathrm{A}$
ICC	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{SW}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	-	-	40	$\mu \mathrm{A}$
$\Delta l_{\text {CC }}$	additional quiescent supply current	per input pin; $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SW}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	-	-	5000	$\mu \mathrm{A}$

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig 5. Test circuit for measuring switch OFF-state current

S	$\overline{\mathrm{E}}$
V_{IL}	V_{IL}
V_{IH}	V_{IL}

$V_{S W}=V_{C C}$ or GND.
Fig 6. Test circuit for measuring switch ON-state current

Table 9: Resistance $\mathbf{R}_{\text {on }}$
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); see test circuit Figure 7 .

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \underline{[1]}$						
$\mathrm{R}_{\mathrm{ON} \text { (rail) }}$	ON resistance (rail)	$\mathrm{V}_{\text {SW }}=\mathrm{GND}$				
		$\mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	8.7	18	Ω
		$\mathrm{I}_{\text {SW }}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	7.2	16	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	7.0	14	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	6.5	12	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	5.9	10	Ω
		$\mathrm{V}_{\text {SW }}=\mathrm{V}_{\text {CC }}$				
		$\mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	12	30	Ω
		$\mathrm{I}_{\mathrm{SW}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	8.3	20	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	7.8	18	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	6.7	15	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	5.2	10	Ω
$\mathrm{R}_{\mathrm{ON} \text { (peak) }}$	ON resistance (peak)	$\mathrm{V}_{\mathrm{SW}}=\mathrm{GND}$ to V_{CC}				
		$\mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	57	130	Ω
		$\mathrm{I}_{\mathrm{SW}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	15	30	Ω
		$\mathrm{I}_{\text {SW }}=12 \mathrm{~mA} ; \mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$	-	13	25	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	9.0	20	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	6.0	15	Ω
$\mathrm{R}_{\mathrm{ON} \text { (flat) }}$	ON resistance (flatness)	$\mathrm{V}_{\mathrm{SW}}=\mathrm{GND}$ to V_{CC}; see Figure 9				
		$\mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	100	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	17	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	10	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	5	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	3	-	Ω
$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$						
$\mathrm{R}_{\mathrm{ON} \text { (rail) }}$	ON resistance (rail)	$\mathrm{V}_{\mathrm{SW}}=\mathrm{GND}$				
		$\mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	-	27	Ω
		$\mathrm{I}_{\mathrm{SW}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	-	24	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	-	21	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	-	18	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	-	15	Ω
		$\mathrm{V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{CC}}$				
		$\mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	-	45	Ω
		$\mathrm{I}_{\mathrm{SW}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	-	30	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	-	27	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	-	23	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	-	15	Ω

Table 9: Resistance $\mathbf{R}_{\text {on }}$...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); see test circuit Figure 7.

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $R_{\mathrm{ON}(\text { peak })}$ | ON resistance (peak) | $\mathrm{V}_{\mathrm{SW}}=\mathrm{GND}$ to V_{CC} | | | | |
| | | $\mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | - | - | 130 | Ω |
| | $\mathrm{I}_{\mathrm{SW}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | - | - | 55 | Ω | |
| | | $\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ | - | - | 35 | Ω |
| | $\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V | - | - | 25 | Ω | |
| | $\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | - | - | 20 | Ω | |

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and nominal V_{CC}.

$\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{SW}} / \mathrm{I}_{\mathrm{SW}}$
Fig 7. Test circuit for measuring switch ON resistance

(1) $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$
(2) $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$
(3) $V_{C C}=2.7 \mathrm{~V}$
(4) $V_{C C}=3.3 \mathrm{~V}$
(5) $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
(6) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Fig 8. Typical switch ON resistance as a function of input voltage

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$
a. $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$
c. $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
(1) $\mathrm{T}_{\text {amb }}=125^{\circ} \mathrm{C}$
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$
b. $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$

d. $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

Fig 9. Switch ON resistance as a function of switch voltage

12. Dynamic characteristics

Table 10: Dynamic characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); test circuit Figure 12.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \underline{[1]}$						
tphL	HIGH-to-LOW propagation delay	see Figure 10				
	A to Bn or Bn to A	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	-	2	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	-	1.2	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	-	1.0	ns
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	-	0.8	ns
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.6	ns
$\mathrm{t}_{\text {PLH }}$	LOW-to-HIGH propagation delay	see Figure 10				
	A to Bn or Bn to A	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	-	2	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	-	1.2	ns
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$	-	-	1.0	ns
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	-	0.8	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.6	ns
$\mathrm{t}_{\text {on }}$	turn-on time	see Figure 11				
	S to A or Bn	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	2.6	6.7	10.3	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	1.9	4.1	6.4	ns
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$	1.9	4.0	5.5	ns
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	1.8	3.4	5.0	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	1.3	2.6	3.8	ns
	\bar{E} to A or Bn	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	1.9	4.0	7.3	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	1.4	2.5	4.4	ns
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$	1.1	2.6	3.9	ns
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	1.2	2.2	3.8	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	1.0	1.7	2.6	ns
$\mathrm{t}_{\text {off }}$	turn-off time	see Figure 11				
	S to A or Bn	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	2.1	6.8	10.0	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.4	3.7	6.1	ns
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$	1.4	4.9	6.2	ns
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	1.1	4.0	5.4	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	1.0	2.9	3.8	ns
	\bar{E} to A or Bn	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	2.3	5.6	8.6	ns
		$\mathrm{V}_{\text {CC }}=2.3 \mathrm{~V}$ to 2.7 V	1.2	3.2	4.8	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	1.4	4.0	5.2	ns
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	2.0	3.7	5.0	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	1.3	2.9	3.8	ns

Table 10: Dynamic characteristics ...continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V); test circuit Figure 12.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$						
$\mathrm{t}_{\text {PHL }}$	HIGH-to-LOW propagation delay	see Figure 10				
	A to Bn or Bn to A	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	-	2.5	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	-	1.5	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	-	1.25	ns
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	-	1.0	ns
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.8	ns
tPLH	LOW-to-HIGH propagation delay	see Figure 10				
	A to Bn or Bn to A	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	-	2.5	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	-	1.5	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	-	1.25	ns
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	-	1.0	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.8	ns
$\mathrm{t}_{\text {on }}$	turn-on time	see Figure 11				
	S to A or Bn	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	2.6	-	12.9	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	1.9	-	8.0	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	1.8	-	7.0	ns
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	1.8	-	6.3	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	1.3		4.8	ns
	\bar{E} to A or Bn	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	1.9	-	9.2	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	1.4	-	5.5	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	1.1	-	4.9	ns
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	1.2	-	4.8	ns
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ to 5.5 V	1.0	-	3.3	ns
$\mathrm{t}_{\text {off }}$	turn-off time	see Figure 11				
	S to A or Bn	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	2.1	-	12.5	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.4	-	7.7	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	1.4	-	7.8	ns
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	1.1	-	6.8	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	1.0		4.8	ns
	\bar{E} to A or Bn	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	2.3	-	11.0	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.2	-	6.0	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	1.4	-	6.5	ns
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	2.0	-	6.3	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	1.3	-	4.8	ns

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and nominal V_{CC}.

13. Waveforms

Measurement points are given in Table 11.
Logic levels: V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.
Fig 10. Input (Bn or A) to output (A or Bn) propagation delays

Table 11: Measurement points

Supply voltage	Input	Output		
$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{X}}$	$\mathbf{V}_{\mathbf{Y}}$
1.65 V to 2.7 V	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$
2.7 V to 5.5 V	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$

Test data is given in Table 12.
Definitions test circuit:
$R_{T}=$ termination resistance (should be equal to output impedance Z_{o} of the pulse generator).
$C_{L}=$ load capacitance (including jig and probe capacitance).
$R_{L}=$ load resistance.
$\mathrm{V}_{\mathrm{EXT}}=$ external voltage for measuring switching times.
Fig 12. Load circuitry for switching times

Table 12: Test data

Supply voltage	Input		Load		$\mathrm{V}_{\text {EXT }}$		
$V_{\text {cc }}$	$\mathrm{V}_{\mathbf{I}}$	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	C_{L}	\mathbf{R}_{L}	$\mathrm{t}_{\text {PLH, }}, \mathrm{t}_{\text {PHL }}$	$t_{\text {on }}, t_{\text {off }}$	
						HIGH to OFF OFF to HIGH	LOW to OFF OFF to LOW
1.65 V to 1.95 V	V_{CC}	$\leq 2.0 \mathrm{~ns}$	30 pF	$1 \mathrm{k} \Omega$	open	GND	$2 \times V_{C C}$
2.3 V to 2.7 V	$\mathrm{V}_{C C}$	$\leq 2.0 \mathrm{~ns}$	30 pF	500Ω	open	GND	$2 \times V_{C C}$
2.7 V	$V_{C C}$	$\leq 2.5 \mathrm{~ns}$	50 pF	500Ω	open	GND	$2 \times V_{C C}$
3 V to 3.6 V	V_{CC}	$\leq 2.5 \mathrm{~ns}$	50 pF	500Ω	open	GND	$2 \times V_{C C}$
4.5 V to 5.5 V	V_{CC}	$\leq 2.5 \mathrm{~ns}$	50 pF	500Ω	open	GND	$2 \times V_{C C}$

14. Additional dynamic characteristics

Table 13: Additional dynamic characteristics
At recommended operating conditions; typical values measured at $T_{a m b}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
THD	total harmonic distortion	$\begin{aligned} & \mathrm{f}_{\mathrm{i}}=600 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} ; \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{i}}=0.5 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \text { see Figure } 13 \end{aligned}$				
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$	-	0.260	-	\%
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	0.078	-	\%
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	0.078	-	\%
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	0.078	-	\%
$\mathrm{f}_{(-3 \mathrm{~dB})}$	$-3 d B$ frequency response	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \\ & \text { see Figure } 14 \end{aligned}$	[1]			
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	200	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	300	-	MHz
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$	-	300	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	300	-	MHz

Table 13: Additional dynamic characteristics ...continued At recommended operating conditions; typical values measured at $T_{a m b}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\alpha_{\text {OFF(t) }}$	OFF-state feed-through attenuation	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \\ & \mathrm{f}_{\mathrm{i}}=10 \mathrm{MHz} ; \text { see Figure } 15 \end{aligned}$	[2]			
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-42	-	dB
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	-42	-	dB
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-40	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-40	-	dB
$\mathrm{V}_{\mathrm{ct} \text { (sw-sw) }}$	crosstalkbetween switches	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \\ & \mathrm{f}_{\mathrm{i}}=10 \mathrm{MHz} ; \text { see Figure } 16 \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-68	-	dBV
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	-70	-	dBV
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-70	-	dBV
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	-70	-	dBV
$\mathrm{Q}_{\text {inj }}$	charge injection	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF} ; \mathrm{V}_{\text {gen }}=0 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{gen}}=0 \Omega ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \text { see Figure } 17 \end{aligned}$	[3]			
		$\mathrm{V}_{C C}=1.8 \mathrm{~V}$	-	< 0.003	-	pC
		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	-	0.004	-	pC
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	0.0045	-	pC
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	0.0045	-	pC
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	0.0045	-	pC

[1] Adjust f_{i} voltage to obtain 0 dBm level at output. Increase f_{i} frequency until dB meter reads -3 dB .
[2] Adjust f_{i} voltage to obtain 0 dBm level at input.
[3] Definition: $\mathrm{Q}_{\mathrm{inj}}=\Delta \mathrm{V}_{\mathrm{O}} \times \mathrm{C}_{\mathrm{L}}$. Guaranteed by design.

Fig 13. Test circuit for measuring total harmonic distortion

Fig 14. Test circuit for measuring the frequency response when switch is in ON-state

Fig 15. Test circuit for measuring feed-through attenuation when switch is in OFF-state

Fig 16. Test circuit for measuring crosstalk between switches

$\Delta \mathrm{V}_{\mathrm{O}}=$ output voltage variation
$\mathrm{R}_{\text {gen }}=$ generator resistance
$\mathrm{V}_{\text {gen }}=$ generator voltage
Fig 17. Test circuit for measuring charge injection

15. Package outline

| UNIT | \mathbf{A} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| max. | | $\mathbf{A}_{\mathbf{1}} \quad \mathbf{A}_{\mathbf{2}} \quad \mathbf{A}_{\mathbf{3}}$

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT765-1		MO-187			$02-06-07$	

Fig 18. Package outline SOT765-1 (VSSOP8)

DIMENSIONS (mm are the original dimensions)

UNIT	$\mathbf{A}^{(1)}$ $\mathbf{m a x}$	$\mathbf{A}_{\mathbf{1}}$ \max	\mathbf{b}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{1}}$
mm	0.5	0.04	0.25 0.17	2.0 1.9	1.05 0.95	0.6	0.5	0.35 0.27	0.40 0.32

Notes

1. Including plating thickness.
2. Can be visible in some manufacturing processes.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			

Fig 19. Package outline SOT833-1 (XSON8)

16. Abbreviations

Table 14: Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
TTL	Transistor Transistor Logic
HBM	Human Body Model
ESD	ElectroStatic Discharge
MM	Machine Model
CDM	Charged Device Model
DUT	Device Under Test

17. Revision history

Table 15: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
74LVC2G53_1	20060110	Product data sheet	-	-	-

18. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

19. Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

20. Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

21. Trademarks

Notice - All referenced brands, product names, service names and trademarks are the property of their respective owners.

22. Contact information

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

23. Contents

1 General description 1
2 Features 1
3 Quick reference data 2
4 Ordering information. 2
5 Marking. 2
6 Functional diagram 3
7 Pinning information 3
7.1 Pinning 3
7.2 Pin description 4
8 Functional description 4
8.1 Function table 4
9 Limiting values 5
10 Recommended operating conditions. 5
11 Static characteristics 6
12 Dynamic characteristics 12
13 Waveforms 14
14 Additional dynamic characteristics 15
15 Package outline 19
16 Abbreviations. 21
17 Revision history. 21
18 Data sheet status 22
19 Definitions 22
20 Disclaimers. 22
21 Trademarks 22
22 Contact information 22
© Koninklijke Philips Electronics N.V. 2006
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 10 January 2006 Document number: 74LVC2G53_1
Published in The Netherlands

[^0]: [1] To avoid drawing V_{CC} current out of terminal A when switch current flows in terminal Bn , the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal A , no V_{cc} current will flow out of terminal Bn . In this case, there is no limit for the voltage drop across the switch.
 [2] Applies to control signal levels.

