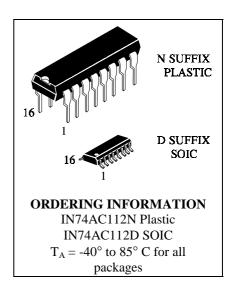
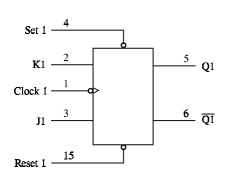
## **IN74AC112**

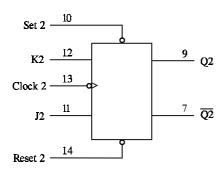

# **Dual J-K Flip-Flop with Set and Reset**

## **High-Speed Silicon-Gate CMOS**

The IN74AC112 is identical in pinout to the LS/ALS112, HC/HCT112. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LS/ALS outputs.

Each flip-flop is negative-edge clocked and has active-low asynchronous Set and Reset inputs.


- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA; 0.1 μA @ 25°C
- High Noise Immunity Characteristic of CMOS Devices
- Outputs Source/Sink 24 mA




#### PIN ASSIGNMENT

| CLOCK 1 1 1 ●  | 16 V <sub>CC</sub> |
|----------------|--------------------|
| <b>K</b> 1 🛘 2 | 15 RESET 1         |
| <b>J</b> I 🛚 3 | 14 RESET 2         |
| SET 1 🛚 4      | 13 CLOCK 2         |
| <b>Q</b> 1 🛚 5 | 12 K2              |
| <u>Qī</u> ☐ 6  | 11 🕽 12            |
| ₹ 🗓 7          | 10 SET 2           |
| GND ☐ 8        | 9 🛭 Q2             |

#### **LOGIC DIAGRAM**





PIN  $16=V_{CC}$ PIN 8 = GND

### **FUNCTION TABLE**

| Inputs |       |       |   | Outputs |           |                |
|--------|-------|-------|---|---------|-----------|----------------|
| Set    | Reset | Clock | J | K       | Q         | $\overline{Q}$ |
| L      | Н     | X     | X | X       | Н         | L              |
| Н      | L     | X     | X | X       | L         | Н              |
| L      | L     | X     | X | X       | $L^*$     | $L^*$          |
| Н      | Н     | /     | L | L       | No Change |                |
| Н      | Н     | /     | L | Н       | L         | Н              |
| Н      | Н     | /     | Н | L       | Н         | L              |
| Н      | Н     | /     | Н | Н       | Toggle    |                |
| Н      | Н     | L     | X | X       | No Change |                |
| Н      | Н     | Н     | X | X       | No Change |                |
| Н      | Н     |       | X | X       | No Change |                |

<sup>\*</sup> Both outputs will remain low as long as Set and Reset are low, but the output states are unpredictable if Set and Reset go high simultaneously



X = Don't Care

#### MAXIMUM RATINGS\*

| Symbol           | Parameter                                                                     | Value                        | Unit |
|------------------|-------------------------------------------------------------------------------|------------------------------|------|
| $V_{CC}$         | DC Supply Voltage (Referenced to GND)                                         | -0.5 to +7.0                 | V    |
| $V_{IN}$         | DC Input Voltage (Referenced to GND)                                          | -0.5 to V <sub>CC</sub> +0.5 | V    |
| V <sub>OUT</sub> | DC Output Voltage (Referenced to GND)                                         | -0.5 to V <sub>CC</sub> +0.5 | V    |
| $I_{IN}$         | DC Input Current, per Pin                                                     | ±20                          | mA   |
| $I_{OUT}$        | DC Output Sink/Source Current, per Pin                                        | ±50                          | mA   |
| $I_{CC}$         | DC Supply Current, V <sub>CC</sub> and GND Pins                               | ±50                          | mA   |
| $P_{D}$          | Power Dissipation in Still Air, Plastic DIP+<br>SOIC Package+                 | 750<br>500                   | mW   |
| Tstg             | Storage Temperature                                                           | -65 to +150                  | °C   |
| $T_{L}$          | Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package) | 260                          | °C   |

<sup>\*</sup>Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

SOIC Package: : - 7 mW/°C from 65° to 125°C

#### RECOMMENDED OPERATING CONDITIONS

| Symbol                          | Parameter                                                                                                                        |             | Max             | Unit |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|------|
| $V_{CC}$                        | DC Supply Voltage (Referenced to GND)                                                                                            | 2.0         | 6.0             | V    |
| $V_{IN}, V_{OUT}$               | DC Input Voltage, Output Voltage (Referenced to GND)                                                                             |             | $V_{CC}$        | V    |
| $T_{J}$                         | Junction Temperature (PDIP)                                                                                                      |             | 140             | °C   |
| $T_{A}$                         | Operating Temperature, All Package Types                                                                                         |             | +85             | °C   |
| $I_{OH}$                        | Output Current - High                                                                                                            |             | -24             | mA   |
| $I_{OL}$                        | Output Current - Low                                                                                                             |             | 24              | mA   |
| t <sub>r</sub> , t <sub>f</sub> | Input Rise and Fall Time $^*$ $V_{CC} = 3.0 \text{ V}$ (except Schmitt Inputs) $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 5.5 \text{ V}$ | 0<br>0<br>0 | 150<br>40<br>25 | ns/V |

 $<sup>^*</sup>V_{IN}\,$  from 30% to 70%  $V_{CC}\,$ 

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation,  $V_{IN}$  and  $V_{OUT}$  should be constrained to the range  $GND \leq (V_{IN} \text{ or } V_{OUT}) \leq V_{CC}$ .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or  $V_{\text{CC}}$ ). Unused outputs must be left open.



<sup>+</sup>Derating - Plastic DIP: - 10 mW/°C from 65° to 125°C

## DC ELECTRICAL CHARACTERISTICS(Voltages Referenced to GND)

|                   |                                                      |                                                                                                                      | $V_{CC}$          | Guarante             | eed Limits           |      |
|-------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|----------------------|------|
| Symbol            | Parameter                                            | Test Conditions                                                                                                      | V                 | 25 °C                | -40°C to<br>85°C     | Unit |
| $V_{IH}$          | Minimum High-Level<br>Input Voltage                  | $V_{OUT}$ =0.1 V or $V_{CC}$ -0.1 V                                                                                  | 3.0<br>4.5<br>5.5 | 2.1<br>3.15<br>3.85  | 2.1<br>3.15<br>3.85  | V    |
| $V_{\mathrm{IL}}$ | Maximum Low -<br>Level Input Voltage                 | V <sub>OUT</sub> =0.1 V or V <sub>CC</sub> -0.1 V                                                                    | 3.0<br>4.5<br>5.5 | 0.9<br>1.35<br>1.65  | 0.9<br>1.35<br>1.65  | V    |
| $V_{\mathrm{OH}}$ | Minimum High-Level<br>Output Voltage                 | I <sub>OUT</sub> ≤ -50 μA                                                                                            | 3.0<br>4.5<br>5.5 | 2.9<br>4.4<br>5.4    | 2.9<br>4.4<br>5.4    | V    |
|                   |                                                      | $^*$ V <sub>IN</sub> =V <sub>IH</sub> or V <sub>IL</sub><br>$I_{OH}$ =-12 mA<br>$I_{OH}$ =-24 mA<br>$I_{OH}$ =-24 mA | 3.0<br>4.5<br>5.5 | 2.56<br>3.86<br>4.86 | 2.46<br>3.76<br>4.76 |      |
| V <sub>OL</sub>   | Maximum Low-Level<br>Output Voltage                  | I <sub>OUT</sub> ≤ 50 μA                                                                                             | 3.0<br>4.5<br>5.5 | 0.1<br>0.1<br>0.1    | 0.1<br>0.1<br>0.1    | V    |
|                   |                                                      | $^*$ V <sub>IN</sub> =V <sub>IH</sub> or V <sub>IL</sub><br>$I_{OL}$ =12 mA<br>$I_{OL}$ =24 mA<br>$I_{OL}$ =24 mA    | 3.0<br>4.5<br>5.5 | 0.36<br>0.36<br>0.36 | 0.44<br>0.44<br>0.44 |      |
| $I_{IN}$          | Maximum Input<br>Leakage Current                     | V <sub>IN</sub> =V <sub>CC</sub> or GND                                                                              | 5.5               | ±0.1                 | ±1.0                 | μА   |
| $I_{OLD}$         | +Minimum Dynamic<br>Output Current                   | V <sub>OLD</sub> =1.65 V Max                                                                                         | 5.5               |                      | 75                   | mA   |
| $I_{OHD}$         | +Minimum Dynamic<br>Output Current                   | V <sub>OHD</sub> =3.85 V Min                                                                                         | 5.5               |                      | -75                  | mA   |
| $I_{CC}$          | Maximum Quiescent<br>Supply Current<br>(per Package) | V <sub>IN</sub> =V <sub>CC</sub> or GND                                                                              | 5.5               | 4.0                  | 40                   | μΑ   |

<sup>\*</sup> All outputs loaded; thresholds on input associated with output under test.

Note:  $I_{IN}$  and  $I_{CC}$  @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V  $V_{CC}$ 



<sup>+</sup>Maximum test duration 2.0 ms, one output loaded at a time.

## $\textbf{AC ELECTRICAL CHARACTERISTICS}(C_L = 50 \text{pF}, Input \ t_r = t_f = 3.0 \ \text{ns})$

|                  |                                                      | V <sub>CC</sub> * | (          | Guaranteed Limits |                  |              |      |
|------------------|------------------------------------------------------|-------------------|------------|-------------------|------------------|--------------|------|
| Symbol           | Parameter                                            | V                 | 25 °C      |                   | -40°C to<br>85°C |              | Unit |
|                  |                                                      |                   | Min        | Max               | Min              | Max          |      |
| $f_{\text{max}}$ | Maximum Clock Frequency (Figure 1)                   | 3.3<br>5.0        | 145<br>145 |                   | 125<br>125       |              | MHz  |
| t <sub>PLH</sub> | Propagation Delay, Clock to Q or Q (Figure 1)        | 3.3<br>5.0        | 1.0<br>1.0 | 16.0<br>13.0      | 1.0<br>1.0       | 17.0<br>13.5 | ns   |
| t <sub>PHL</sub> | Propagation Delay, Clock to Q or Q (Figure 1)        | 3.3<br>5.0        | 1.0<br>1.0 | 16.0<br>13.0      | 1.0<br>1.0       | 16.5<br>13.5 | ns   |
| t <sub>PLH</sub> | Propagation Delay, Set or Reset to Q or Q (Figure 2) | 3.3<br>5.0        | 1.0<br>1.0 | 11.0<br>9.5       | 1.0<br>1.0       | 11.5<br>10.0 | ns   |
| t <sub>PHL</sub> | Propagation Delay, Set or Reset to Q or Q (Figure 2) | 3.3<br>5.0        | 1.0<br>1.0 | 11.0<br>9.5       | 1.0<br>1.0       | 11.5<br>10.0 | ns   |
| $C_{IN}$         | Maximum Input Capacitance                            | 5.0               | 4          | .5                | 4.               | 5            | pF   |

|          |                               | Typical @25°C,V <sub>CC</sub> =5.0 V |    |
|----------|-------------------------------|--------------------------------------|----|
| $C_{PD}$ | Power Dissipation Capacitance | 35                                   | pF |

<sup>\*</sup>Voltage Range 3.3 V is 3.3 V ±0.3 V Voltage Range 5.0 V is 5.0 V ±0.5 V

## **TIMING REQUIREMENTS**( $C_L$ =50pF,Input $t_r$ = $t_f$ =3.0 ns)

|                |                                                            | V <sub>CC</sub> * | Guarantee  |                  |      |
|----------------|------------------------------------------------------------|-------------------|------------|------------------|------|
| Symbol         | Parameter                                                  | V                 | 25 °C      | -40°C to<br>85°C | Unit |
| $t_{su}$       | Minimum Setup Time, J or K to Clock (Figure 3)             | 3.3<br>5.0        | 6.5<br>4.5 | 7.5<br>5.0       | ns   |
| $t_h$          | Minimum Hold Time, Clock to J or K (Figure 3)              | 3.3<br>5.0        | 0          | 0<br>0           | ns   |
| $t_{ m w}$     | Minimum Pulse Width, Clock (Figure 1)                      | 3.3<br>5.0        | 6.0<br>5.0 | 6.5<br>5.5       | ns   |
| t <sub>w</sub> | Minimum Pulse Width,Set or Reset (Figure 2)                | 3.3<br>5.0        | 6.5<br>5.0 | 7.5<br>5.5       | ns   |
| $t_{\rm rec}$  | Minimum Recovery Time, Set or Reset to<br>Clock (Figure 2) | 3.3<br>5.0        | 0 0        | 0                | ns   |

<sup>\*</sup>Voltage Range 3.3 V is 3.3 V  $\pm 0.3$  V Voltage Range 5.0 V is 5.0 V  $\pm 0.5$  V



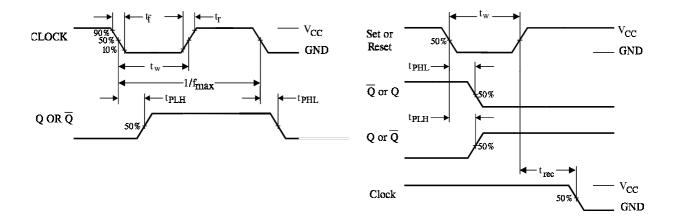



Figure 1. Switching Waveform

Figure 2. Switching Waveform

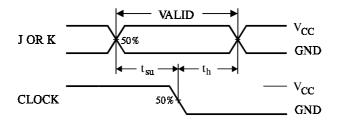
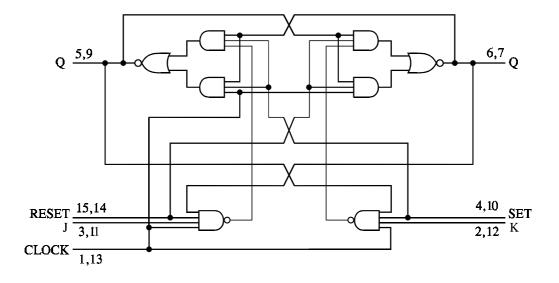




Figure 3. Switching Waveform

#### **EXPANDED LOGIC DIAGRAM**

