HIGH SPEED DUAL CHANNEL OPTICALLY COUPLED ISOLATOR PHOTOTRANSISTOR OUTPUT

APPROVALS

- UL recognised, File No. E91231

DESCRIPTION

These dual channel diode-transistor optocouplers use a light emitting diode and an integrated photon detector to provide 2500 Volts ${ }_{\text {RMS }}$ electrical isolation between input and output. Seperate connection for the photodiode bias and output transistor collector improve the speed up to a hundred times that of a conventional photo-transistor coupler by reducing the base-collector capacitance.

FEATURES

- High speed - 250k b/s NRZ
- High Common Mode Transient Immunity $1000 \mathrm{~V} / \mu \mathrm{s}$
- TTL Compatible
- Open Collector Outputs
- $2500 \mathrm{~V}_{\text {rms }}$ Withstand Test Voltage, 1 Min
- Options :-

10 mm lead spread - add G after part no. Surface mount - add SM after part no.
Tape\&reel - add SMT\&R after part no.

- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- Line receivers
- Pulse transformer replacement
- Wide bandwidth analog coupling
- Output interface to CMOS-LSTTL-TTL

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$ unless otherwise specified)

```
Storage Temperature
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Operating Temperature
``` \(\qquad\)
``` \(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\) Lead Soldering Temperature
( \(1 / 16\) inch ( 1.6 mm ) from case for 10 secs ) \(260^{\circ} \mathrm{C}\)
```


INPUT DIODE

Average Forward Current	$25 \mathrm{~mA}(1)$
Peak Forward Current	
(50% duty cycle, 1 ms pulse width) Peak Transient Current (equal to or less than $1 \mu \mathrm{~s}$ P.W., 300 pps$)$	$50 \mathrm{~mA}(2)$
Reverse Voltage Power Dissipation 5 V	$45 \mathrm{~mW}(3)$

Average Forward Current
mA (1)
(50% duty cycle, 1 ms pulse width)
(equal to or less than $1 \mu \mathrm{~s}$ P.W., 300 pps)
Reverse Voltage 45 mW (3)

DETECTOR

| Average Output Current $\quad 8 \mathrm{~mA}$ |
| :--- | :--- |
| Peak Output Current $\quad 16 \mathrm{~mA}$ |
| Supply Voltage $\quad-0.5$ to +30 V |
| Output Voltage $\quad-0.5$ to +20 V |
| Power Dissipation $\quad 35 \mathrm{~mW}(4)$ |

ISOCOM COMPONENTS LTD

Unit 25B, Park View Road West,
Park View Industrial Estate, Brenda Road Hartlepool, Cleveland, TS25 1YD
Tel: (01429) 863609 Fax :(01429) 863581

ISOCOM INC

1024 S. Greenville Ave, Suite 240, Allen, TX 75002 USA
Tel:(214)495-0755 Fax:(214)495-0901 e-mail info@isocom.com http://www.isocom.com

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $\mathbf{7 0}^{\circ} \mathrm{C}$ Unless otherwise noted)

PARAMETER	SYM	DEVICE	MIN	TYP*	MAX	UNITS	TEST CONDITION
Current Transfer Ratio (note 5,6)	CTR		15	21		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
			12	19		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
			11	14		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$
			9	12		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$
Logic Low Output Voltage (note 5)	$\mathrm{V}_{\text {OL }}$			$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=0.7 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1.1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$
Logic High Output Current (note 5)	I_{OH}			0.02	500	nA	$\begin{aligned} & \mathrm{I}_{\mathrm{FF}}=\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{O} 1}=\mathrm{V}_{\mathrm{O} 2}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$
					50	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{O} 1}=\mathrm{V}_{\mathrm{O} 2}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$
Logic Low Supply Current	$\mathrm{I}_{\text {CCL }}$			40		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{FF}}=\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O} 1}=\mathrm{V}_{\mathrm{O} 2}=\text { open } \end{aligned}$
				80		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{FF}}=\mathrm{I}_{\mathrm{F} 2}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O} 1}=\mathrm{V}_{\mathrm{O} 2}=\text { open } \end{aligned}$
Logic High Supply Current	$\mathrm{I}_{\text {CCH }}$			0.05	4	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}=}=\mathrm{I}_{\mathrm{F} 2}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O} 1}=\mathrm{V}_{\mathrm{O} 2}=\text { open } \end{aligned}$
Input Forward Voltage (note 5)	V_{F}			1.5	1.7	V	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
				1.5	1.7	V	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Temperature Coefficient of Forward Voltage (note 5)	$\frac{\Delta \mathrm{V}_{\mathrm{F}}}{\Delta \mathrm{~T}_{\mathrm{A}}}$			-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$
				-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$
Input Reverse Voltage (note 5)	V_{R}		5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Input Capacitance (note 5)	$\mathrm{C}_{\text {IN }}$			60		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$
Input-output Isolation Voltage (note 7)	$\mathrm{V}_{\text {ISO }}$		2500	5000		$\mathrm{V}_{\text {RMS }}$	R.H.equal to or less than $50 \%, \mathrm{t}=1 \mathrm{~min} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Resistance (Input to Output)(note 7)	$\mathrm{R}_{\mathrm{t}-\mathrm{o}}$			10^{12}		Ω	$\mathrm{V}=500 \mathrm{~V}$ dc
Capacitance (Input to Output)(note7)	$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$					pF	$\mathrm{f}=1 \mathrm{MHz}$
	$\mathrm{I}_{\mathrm{I}-1}$					$\mu \mathrm{A}$	45% Relative Humidity $\mathrm{t}=5 \mathrm{~s}, \mathrm{~V}=500 \mathrm{~V} \mathrm{dc}$
Resistance (Input to Input)(note8)	R			10^{11}		Ω	$\mathrm{V}_{\mathrm{I}-\mathrm{I}}=500 \mathrm{~V} \mathrm{dc}$
Capacitance (Input to Input)(note8)	$\mathrm{C}_{\text {I-I }}$			0.25		pF	$\mathrm{f}=1 \mathrm{MHz}$

SWITCHING SPECIFICATIONS AT $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\right.$ Unless otherwise noted)

PARAMETER	SYM	DEVICE	MIN	TYP	MAX	UNITS	TEST CONDITION
Propagation Delay Time to Logic Low at Output (fig 1)	$\mathrm{t}_{\text {PHL }}$			0.8	1.5	$\mu \mathrm{s}$	$\begin{gathered} \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=7.5 \mathrm{k} \Omega \\ (\text { note } 10) \end{gathered}$
				0.3	1.5	$\mu \mathrm{s}$	$\begin{gathered} \mathrm{I}_{\mathrm{F}}=\underset{(\text { notel } 11)}{16 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega,} \end{gathered}$
Propagation Delay Time to Logic High at Output (fig 1)	$\mathrm{t}_{\text {PLH }}$			1.0	2.5	$\mu \mathrm{s}$	$\begin{gathered} \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=7.5 \mathrm{k} \Omega, \\ (\text { note } 10) \end{gathered}$
				1.1	2.5	$\mu \mathrm{s}$	$\begin{gathered} \mathrm{I}_{\mathrm{F}}=\underset{(\text { notel } 11}{16 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega,} \end{gathered}$
Common Mode Transient Immunity at Logic High Level Output (fig 2)	CM_{H}			1000		$\mathrm{V} / \mathrm{\mu s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{R}_{\mathrm{L}}=7.5 \mathrm{k} \Omega,(\text { note } 9,10) \end{aligned}$
				1000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega,(\text { note } 9,11) \end{aligned}$
Common Mode Transient Immunity at Logic Low Level Output (fig 2)	CM_{L}			$\begin{aligned} & -1000 \\ & -1000 \end{aligned}$		$\mathrm{V} / \mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{R}_{\mathrm{L}}=7.5 \mathrm{k} \Omega,(\text { note } 9,10) \\ & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{PP}} \\ & \left.\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega,(\text { note } 9,11)^{2}\right) \end{aligned}$

NOTES:-

1. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $1.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. Each channel.
6. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I_{O}, to the forward LED input current, I_{F} times 100%.
7. Device considered a two-terminal device: pins $1,2,3$, and 4 shorted together and pins $5,6,7$, and 8 shorted together.
8. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
9. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dVcm} / \mathrm{dt}$ on the leading edge of the common mode pulse V_{CM} to assure that the output will remain in a Logic High state (i.e. $\mathrm{V}_{\mathrm{o}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dVcm} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM} to assure that the output will remain in Logic Low state (i.e. $\mathrm{V}_{\mathrm{o}}<0.8 \mathrm{~V}$).
10. The $7.5 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and a $20 \mathrm{k} \Omega$ pull-up resistor.
11. The $4.7 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and a $8.2 \mathrm{k} \Omega$ pull-up resistor.
12. The $2500 \mathrm{~V}_{\mathrm{RMS}} / 1$ minute capability is validated by a factory $3.1 \mathrm{k}_{\mathrm{RMS}} / 1$ second dielectric test.

FIG. 1 SWITCHING TEST CIRCUIT

FIG. 2 TEST CIRCUIT FOR TRANSIENT IMMUNITY AND TYPICAL WAVEFORMS

Logic High Output Current vs. Ambient Temperature

Normalized Current Transfer Ratio vs. Ambient Temperature

Normalized Current Transfer Ratio vs. Forward Current

Normalized Propagation Delay vs. Ambient Temperature

