Typical Applications

- Digital Communication Systems
 - Portable Battery-Powered Equipment
 - Spread-Spectrum Communication Systems • Commercial and Consumer Systems
 - Driver for Higher Power Linear Applications • Base Station Equipment

Product Description

The RF2103P is a medium power linear amplifier IC. The device is manufactured on an advanced Gallium Arsenide Heterojunction Bipolar Transistor (HBT) process, and has been designed for use as the final linear RF amplifier in UHF radio transmitters operating between 450 MHz and 1000 MHz . It may also be used as a driver amplifier in higher power applications. The device is self-contained with the exception of the output matching network, power supply feed line, and bypass capacitors, and it produces an output power level of 750 mW (CW). The device can be used in 3 cell battery applications. The maximum CW output at 3.6 V is 175 mW . The unit has a total gain of 31 dB , depending upon the output matching network.

Optimum Technology Matching ${ }^{\circledR}$ A pplied

\square Si BJT	\square GaAs HBT	\square GaAs MESFET
\square Si Bi-CMOS	\square SiGe HBT	\square Si CMOS

Functional Block Diagram

Package Style: SOIC-14

Features

- 450 MHz to 1000 MHz Operation
- Up to 750 mW CW Output Power
- 31dB Small Signal Gain
- Single 2.7V to 7.5V Supply
- 47\% Efficiency
- Digitally Controlled Power Down Mode

Ordering Information

RF2103P	Medium Power Linear Amplifier
RF2103P PCBA	Fully Assembled Evaluation Board

RF2103P

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to +7.5	$\mathrm{~V}_{\mathrm{DC}}$
Power Down Voltage (VPD)	-0.5 to +5	V
DC Supply Current	350	mA
Input RF Power	+12	dBm
Output Load VSWR	$10: 1$	
Operating Case Temperature	-40 to +100	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

4 Caution! ESD sensitive device.
RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Overall					$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=5.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{PD}}=5.0 \mathrm{~V}, \\ & \mathrm{Z}_{\mathrm{LOAD}}=18 \Omega, \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}, \text { Freq }=915 \mathrm{MHz} \end{aligned}$
Frequency Range		450 to 1000		MHz	
Maximum Output Power		+28.8		dBm	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}$
Maximum Output Power		+26.5		dBm	$\mathrm{V}_{\mathrm{CC}}=5.8 \mathrm{~V}$
Second Harmonic		-24		dBc	Without external second harmonic trap
Third Harmonic		-30		dBc	
Output Noise Power		<-125		$\mathrm{dBm} / \mathrm{Hz}$	
Input Impedance		50		Ω	With external matching network; see application schematic
Input VSWR		<2:1			With external matching network; see application schematic
Output Impedance		18+j0		Ω	Load Impedance for Optimal Match
Nominal 5.8V					$\mathrm{V}_{\mathrm{CC}}=5.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{PD}}=4.0 \mathrm{~V}, \mathrm{Z}_{\text {LOAD }}=18 \Omega$,
Configuration					$\mathrm{P}_{\text {IN }}=0 \mathrm{dBm}$, Freq $=830 \mathrm{MHz}$
Linear Power Gain		31		dB	
Saturated CW Output Power	24	+26.5		dBm	
IM_{3}		-40	-25	dBc	$\mathrm{P}_{\text {OUT }}=+18.5 \mathrm{dBm} /$ tone
IM_{5}		-45	-30	dBc	$\mathrm{P}_{\text {OUT }}=+18.5 \mathrm{dBm} /$ tone
Collector Current, $\mathrm{I}_{\text {CC }}$		175	250	mA	Total of pins 7 and 8
$V_{\text {PD }}$ Current		<3.5		mA	Into pin 4
CW Total Efficiency		47		\%	
Two Tone Total Efficiency		26		\%	$\mathrm{P}_{\text {OUT }}=+18.5 \mathrm{dBm} /$ tone
Power Supply					
Power Supply Voltage		2.7 to 7.5		V	
Power Supply Idle Current		45	80	mA	
Total "OFF" Current Drain		1	10	$\mu_{\text {A }}$	$\mathrm{V}_{\mathrm{PD}}<0.1 \mathrm{~V}_{\mathrm{DC}}$
Turn-on Time		<100		ns	$\mathrm{V}_{\mathrm{PD}}=0$ to $\mathrm{V}_{\mathrm{PD}}=+4 \mathrm{~V}_{\mathrm{DC}}$

Pin	Function	Description	Interface Schematic
$\mathbf{1}$	RF IN	RF input pin. There is an internal blocking capacitor between this pin and the ereamp innut, but not between the pin and an internal 2k Ω	
resistor to ground.			

Pin	Function	Description	Interface Schematic
$\mathbf{1 4}$	RF OUT	Amplifier RF output. This is an unmatched collector output of the final amplifier transistor. It is internally connected to pins 8, 9, 13 and 14 to provide low series inductance and flexibility in output matching. Bias for the final power amplifier output transistor must also be provided through two of these four pins. Typically, pins 8 and 9 are connected to a network that provides the DC bias and also creates a second har- monic trap. For 915MHz operation, this harmonic trap network is simply a single 2pF capacito from both pins to ground. This capacitor series resonates with internal bond wires at two times the operating fre- quency, effectively shorting out the second harmonic. Shorting out this harmonic serves to increase the amplifier's maximum output power and efficiency, as well as to lower the level of the second harmonic output. Typically, pins 13 and 14 are externally connected very close to the	
package and used as the RF output with a matching network that pre-			
sents the optimum load impedance to the PA for maximum power and			
efficiency, as well as providing DC blocking at the output. Shunt protec-			
tion diodes are included to clip peak voltage excursions above approxi-			
mately 15V to prevent voltage breakdown in worst case conditions.			

Application Schematic

Evaluation Board Schematic 915 MHz Operation

(Download Bill of Materials from www.rfmd.com.)

RF2103P

Evaluation Board Layout

 $1.4^{\prime \prime} \times 1.4$ "

2

IM3, IM5, and IM2 vs. Pout Vcc=Vb=3.6 V, 915 MHz

IM3, IM5, and IM2 vs. Pout
$\mathrm{Vcc}=\mathrm{Vb}=4.8 \mathrm{~V}, 915 \mathrm{MHz}$

IM3, IM5, and IM2 vs. Pout

RF2103P

Pout vs. Vb

Pout vs. Vb

Pout vs. Vb

Efficiency vs. Vb
Vcc=3.6 V, Pin=0 dBm, 915 MHz

Efficiency vs. Vb

Efficiency vs. Vb

