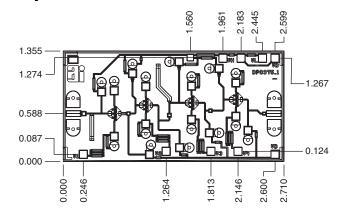
28-40 GHz GaAs MMIC Low Noise Amplifier

III Alpha

AA038N1-00, AA038N2-00


Features

- Single Bias Supply Operation (4.5 V)
- 3.8 dB Typical Noise Figure at 38 GHz
- 17 dB Typical Small Signal Gain
- 0.25 µm Ti/Pd/Au Gates
- 100% On-Wafer RF, DC and Noise Figure Testing
- 100% Visual Inspection to MIL-STD-883 MT 2010

Description

Alpha's four-stage reactively-matched 28–40 GHz GaAs MMIC low noise amplifier has typical small signal gain of 17 dB with a typical noise figure of 3.8 dB at 38 GHz. The chip uses Alpha's proven 0.25 μ m low noise PHEMT technology, and is based upon MBE layers and electron beam lithography for the highest uniformity and repeatability. The FETs employ surface passivation to ensure a rugged, reliable part with through-substrate via holes and gold-based backside metallization to facilitate a conductive epoxy die attach process.

Chip Outline

Dimensions indicated in mm. All DC (V) pads are $0.1 \times 0.1 \text{ mm}$ and RF In, Out pads are 0.07 mm wide. Chip thickness = 0.1 mm.

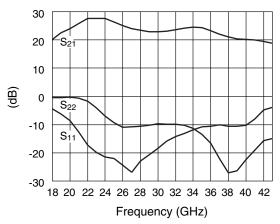
Absolute Maximum Ratings

Characteristic	Value
Operating Temperature (T _C)	-55°C to +90°C
Storage Temperature (T _{ST})	-65°C to +150°C
Bias Voltage (V _D)	6 V _{DC}
Power In (P _{IN})	10 dBm
Junction Temperature (T _J)	175°C

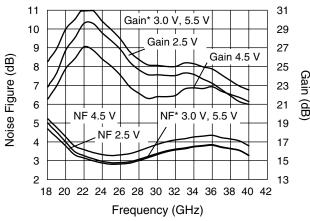
Electrical Specifications at 25°C ($V_{DS} = 4.5 \text{ V}$) AA038N1-00

Parameter	Condition	Symbol	Min.	Typ. ³	Max.	Unit
Drain Current		I _{DS}		35	50	mA
Small Signal Gain	F = 28–40 GHz	G	15	17		dB
Noise Figure	F = 38 GHz	NF		3.8	4.2	dB
Input Return Loss	F = 28–40 GHz	RLI		-10	-6	dB
Output Return Loss	F = 28–40 GHz	RLO		-8	-6	dB
Output Power at 1 dB Gain Compression ¹	F = 38 GHz	P _{1 dB}		6		dBm
Thermal Resistance ²		$\Theta_{\sf JC}$		101		°C/W

AA038N2-00

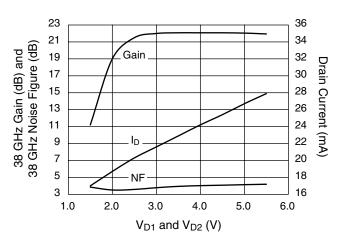

Parameter	Condition	Symbol	Min.	Typ. ³	Max.	Unit
Drain Current		I _{DS}		35	50	mA
Small Signal Gain	F = 37–39.5 GHz	G	17	19		dB
Noise Figure	F = 38 GHz	NF		3.8	4.2	dB
Input Return Loss	F = 37–39.5 GHz	RLI		-14	-6	dB
Output Return Loss	F = 37–39.5 GHz	RLO		-11	-8	dB
Output Power at 1 dB Gain Compression ¹	F = 38 GHz	P _{1 dB}		6		dBm
Thermal Resistance ²		ΘЈС		101		°C/W

^{1.} Not measured on a 100% basis.

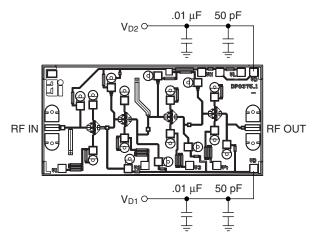

^{2.} Calculated value based on measurement of discrete FET.

^{3.} Typical represents the median parameter value across the specified frequency range for the median chip.

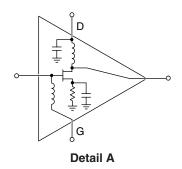
Typical Performance Data

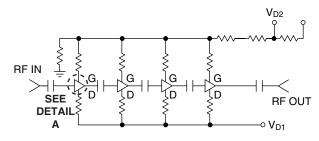


Typical Small Signal Performance S-Parameters (V_D = 4.5 V)


Typical Gain and Noise Figure Performance for Three Bias Conditions

*Special Bias: $V_{D1} = 3.0 \text{ V}, V_{D2} = 5.5 \text{ V}$


Typical Gain and Noise Figure Performance vs. Drain Bias ($V_{D1} = V_{D2}$)


Bias Arrangement

For biasing on, adjust V_D from zero to the desired value (4.5 V recommended). For biasing off, reverse the biasing on procedure.

Circuit Schematic

