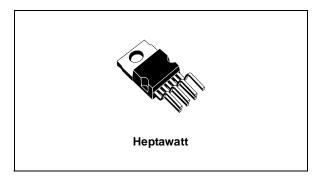


LNB SUPPLY AND CONTROL VOLTAGE REGULATOR


- SIMPLEST INTEGRATED SOLUTION FOR THE LNB REMOTE SUPPLY AND CONTROL
- 500mA GUARANTEED OUTPUT CURRENT
- DUAL INPUT SUPPLY FOR REDUCING POWER DISSIPATION
- 22KHZ BUILT-IN TONE OSCILLATOR (LNBP9 VERSION)
- FAST OSCILLATOR START-UP FOR DISEqCTM ENCODING (LNBP9 VERSION)
- AUXILIARY MODULATION INPUT FOR MORE FLEXIBILITY (LNBP8 VERSION)
- STAND-BY FUNCTION
- SHORT CIRCUIT AND OVERTEMPERATURE PROTECTION
- AVAILABLE IN THRU-HOLE PACKAGE

DESCRIPTION

Intended for analog and digital satellite receivers, the LNBP is a monolithic linear voltage regulator, assembled in HeptawattTM, specifically designed to provide the powering voltages and the interfacing signals to the LNB down-converter.

The regulator output can be logic controlled to be 13V or 18V (typ.) by mean of the V_{SEL} pin for the remote controlling of the LNB. In order to reduce the power dissipation of the device when the lowest output voltage is selected, the regulator has 2 supply inputs (V_{CC1} and V_{CC2}). They must be powered respectively at 15V (min.) and 22V (min.), and an internal switch will automatically select the appropriate supply voltage according to the selected output voltage.

The TONE pin (only for the LNBP9 version) activates the internal oscillator so that the DC output is modulated by a 22KHz square wave. This internal oscillator is factory trimmed within a

tolerance of +/- 2KHz, thus no further adjustment or external components are required.

A burst coding of the 22KHz tone can be accomplished thanks to the fast response of the TONE input and the prompt oscillator start-up. This helps designers which want to implement the DiSEqCTM protocols.

In order to improve design flexibility and to allow implementation of other LNB remote control standards, an analogic modulation input pin (EXTM) is available (LNBP8 version only). An appropriate DC blocking capacitor must be used to couple the modulating signal source to the EXTM pin.

Both versions integrate thermal and short circuit protection.

The device is packaged in Heptawatt for an easy thru-hole mounting. If an adequate Heatsink is provided and higher power losses are acceptable, both supply pins can be powered by the same 23V source without affecting any other circuit performance.

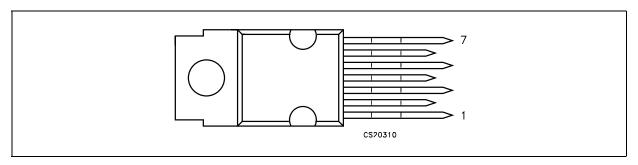

When the IC is powered and put in Stand-by (EN pin LOW), the regulator output is disabled and the IC power consumption is reduced to 300µA typ.

Table 1: Order Codes

TYPE	HEPTAWATT
LNBP8	LNBP8V7V
LNBP9	LNBP9V7V

November 2004 1/8

Figure 1: Pin Configuration (top view)

Table 2: Pin Descriptions

PIN N°	NAME	FUNCTION
1	V _{CC1}	Supply Input 1: 15V to 25V supply. It is automatically selected when V _O = 13V
2	V _{CC2}	Supply Input 2: 22V to 25V supply. It is automatically selected when $V_0 = 18V$
3	OUTPUT	Regulator output. It is 13V typ. when V _{SEL} LOW and 18V typ. when V _{SEL} HIGH
4	GND	GROUND
5	V_{SEL}	Output Voltage Selection: Logic Control Input; if LOW $V_0 = 13V$, when HIGH $V_0 = 18V$
6	ENABLE	Logic Control Input; force LOW to put the IC in shutdown
7 (LNBP9)	TONE	Logic Control Input; force HIGH to activate the internal 22KHz tone
7 (LNBP8)	EXTM	External Modulation: Needs DC decoupling to the AC source. If not used can be left floating

Table 3: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC1} , V _{CC2}	Input Voltage	-0.3 to 28	V
ENABLE, TONE, V _{SEL}	Logic Input Voltage	-0.3 to 7	V
OUTPUT	Output Voltage	28	V
T_J	Operating Junction Temperature Range	-40 to 125	°C
T _{STG}	Storage Temperature Range	-55 to 150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 4: Thermal Data

	Symbol	Parameter	Value	Unit
Ī	R _{THJ-C}	Thermal Resistance Junction-case	2	°C/W

2/8

Figure 2: Block Diagram

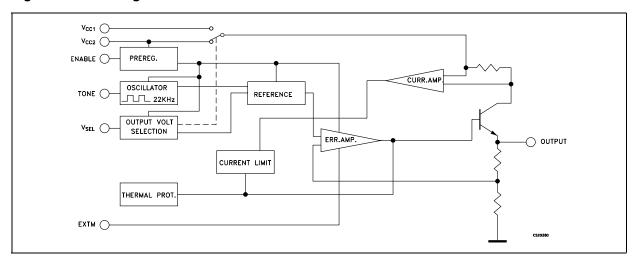


Table 5: Electrical Characteristics (V_{CC1} = 16V, V_{CC2} = 22V, C_{I1} = C_{I2} = 0.22 μ F, C_{O} =0.1 μ F, ENABLE = H, TONE = L (LNBP9), EXTM floating (LNBP8), I_{O} = 50mA, T_{J} = 0 to 85°C unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{CC1}	V _{CC} Supply Input 1	$I_O = 500 \text{ mA}, \text{TONE} = H, V_{SEL} = L$	15		25	V
V _{CC2}	V _{CC} Supply Input 2	$I_O = 500$ mA, TONE = H, $V_{SEL} = H$	22		25	V
Vo	Output Voltage	I _O = 500 mA, V _{SEL} = L	12.5	13	13.5	V
		I _O = 500 mA, V _{SEL} = H	17.3	18	18.7	V
ΔV_{O}	Line Regulation	V _{CC1} = 15 to 18V, V _{SEL} = L		4	40	mV
		V _{CC2} = 22 to 25V, V _{SEL} = H		4	40	
ΔV_{O}	Load Regulation	$V_{CC1} = V_{CC2} = 22V$, $I_O = 50$ to 500mA $V_{SEL} = L$ or H		80	180	mV
I _{MAX}	Output Current Limiting		500		800	mA
f _{TONE}	Tone Frequency	LNBP9 version, TONE = H	20	22	24	KHz
A _{TONE}	Tone Amplitude	LNBP9 version, TONE = H	0.55	0.72	0.9	V
D _{TONE}	Tone Duty Cycle	LNBP9 version, TONE = H	40	50	60	%
t _r , t _f	Tone Rise and Fall Time	LNBP9 version, TONE = H	5	10	15	μs
G _{EXTM}	External Modulation Gain	LNBP8 version, $\Delta V_O/\Delta V_{EXTM}$, f = 10Hz to 40KHz		5		
V_{EXTM}	External Modulation Input Voltage	LNBP8 version, AC Coupling			400	mV
Z _{EXTM}	External Modulation Impedance	LNBP8 version, f = 10Hz to 40KHz		400		Ω
V_{IL}	Control Input Logic LOW	ENABLE, TONE (LNBP9 version), V _{SEL}			0.8	V
V _{IH}	Control Input Logic HIGH	ENABLE, TONE (LNBP9 version), V _{SEL}	2.5			V
I _{IH}	Control Pins Input Current	V _{IH} = 5V, ENABLE, TONE (LNBP9 version), V _{SEL}		20		μΑ
I _{CC}	Supply Current	Output Disabled (ENABLE = L)		0.3	1	mA
		Output Enabled (ENABLE = H), TONE = H $I_O = 500$ mA		3	6	mA
T _{SHDN}	Temperature Shutdown			150		°C

TYPICAL APPLICATION CIRCUITS

Figure 3: LNBP9 with 22KHz Tone Control Pin

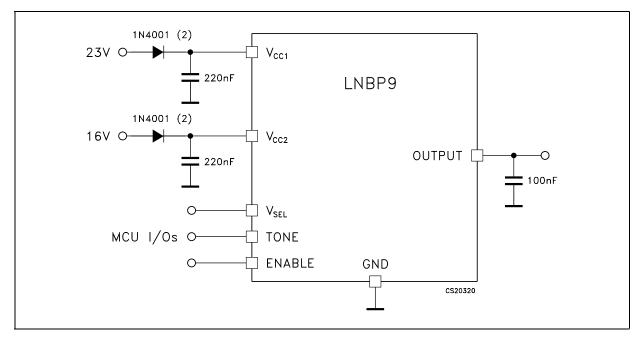
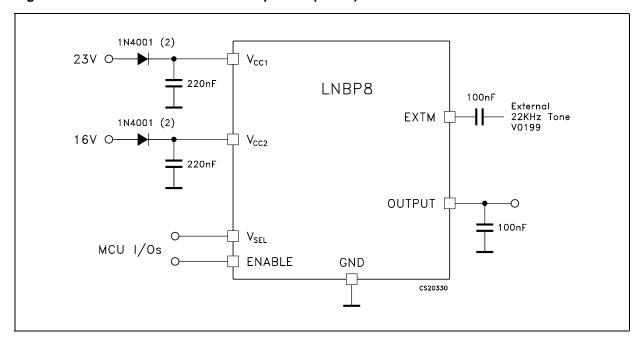
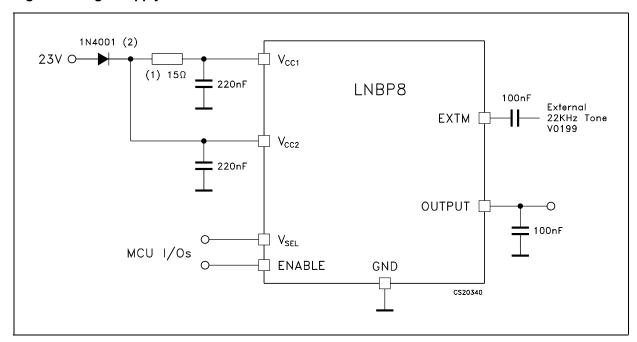
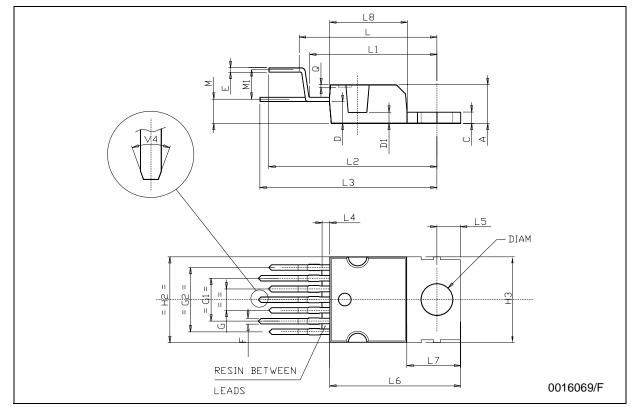




Figure 4: LNBP8 with external 22KHz Input Pin (EXTM)

47/


Figure 5: Single Supply Solution

- (1) In a single supply configuration the presence of the input resistor in the $12-15\Omega$ range is suggested only to reduce the device power dissipation during the 13V output condition. The resistor can be omitted in spite of power dissipation increase.
- (2) The input diodes are mandatory to protect the device from any reverse current.

HEPTAWATT (VERTICAL) MECHANICAL DATA

DIM.	mm.			inch			
DIN.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			4.8			0.189	
С			1.37			0.054	
D	2.4		2.8	0.094		0.110	
D1	1.2		1.35	0.047		0.053	
E	0.35		0.55	0.014		0.022	
F	0.6		0.8	0.024		0.031	
G	2.34	2.54	2.74	0.092	0.100	0.108	
G1	4.88	5.08	5.28	0.192	0.200	0.208	
G2	7.42	7.62	7.82	0.292	0.300	0.308	
H2			10.4			0.409	
H3	10.05		10.4	0.396		0.409	
L	16.70	16.90	17.10	0.657	0.665	0.673	
L1		14.92			0.587		
L2	21.24	21.54	21.84	0.836	0.848	0.860	
L3	22.27	22.52	22.77	0.877	0.887	0.896	
L4			1.29			0.051	
L5	2.6	2.8	3	0.102	0.110	0.118	
L6	15.1	15.5	15.8	0.594	0.610	0.622	
L7	6	6.35	6.6	0.236	0.250	0.260	
М	2.55	2.8	3.05	0.100	0.110	0.120	
M1	4.83	5.08	5.33	0.190	0.200	0.210	
Dia1	3.65		3.85	0.144		0.152	

Table 6: Revision History

Date	Revision	Description of Changes
09-Nov-2004	1	First Release.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

