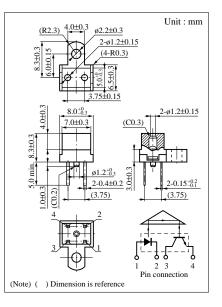
Panasonic

ON2175 Reflective Photosensor

Tape end sensor for DAT


Outline

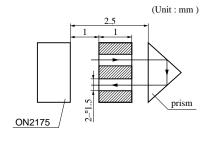
ON2175 is a sensor which consists of a high efficiency GaAs infrared light emitting diode and a high sensitivity Si phototransistor which are arranged together in the same direction. It detects the beginning and end of a tape based on changes in the amount of light reflected from a prism which is situated outside of the sensor.

Features

- Fast response
- Small size and light weight

Absolute Maximum Ratings ($Ta = 25^{\circ}C$) Parameter Symbol Ratings Unit Reverse voltage (DC) V_R 3 V Input (Light Forward current (DC) $I_{\rm F}$ 50 mA emitting diode) P_D^{*1} Power dissipation 75 mW Collector current I_{C} 20 mА Collector to emitter voltage 30 V V_{CEO} Output (Photo transistor) Emitter to collector voltage 5 V VECO P_{C}^{*2} Collector power dissipation 100 mW -25 to +85 Operating ambient temperature °C Topr Temperature Storage temperature T_{stg} -30 to +100 °C

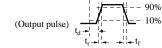
^{*1} Input power derating ratio is 1.0 mW/°C at Ta \geq 25°C.


^{*2} Output power derating ratio is 1.34 mW/°C at Ta \geq 25°C.

Electrical Characteristics ($Ta = 25^{\circ}C$)

Parameter		Symbol	Conditions	min	typ	max	Unit
Input characteristics	Forward voltage (DC)	V _F	$I_F = 50 \text{mA}$			1.5	V
	Reverse current (DC)	I _R	$V_R = 3V$			10	μΑ
Output characteristics	Collector cutoff current	I _{CEO}	$V_{CE} = 10V$			0.2	μΑ
Transfer	Collector current	I _C *1	$V_{CE} = 5V, I_F = 20mA, R_L = 100\Omega$	30			μΑ
	Response time	$t_{\rm r}, t_{\rm f}^{*2}$	$V_{CC} = 10V, I_C = 0.5mA, R_L = 100\Omega$		6		μs
	Collector to emitter saturation voltage	V _{CE(sat)}	$I_F = 50 mA, I_C = 0.1 mA$			0.5	V

Sig.IN


*1 IC Measurement method

*2 Switching time measurement circuit

Sig.OUT

V_{CC} (Input pulse)

t_d: Delay time

≯ R₁

- $t_r\colon$ Rise time (Time required for the collector current to increase from 10% to 90% of its final value)
- $t_{\rm f}$: Fall time (Time required for the collector current to decrease from 90% to 10% of its initial value)

Panasonic