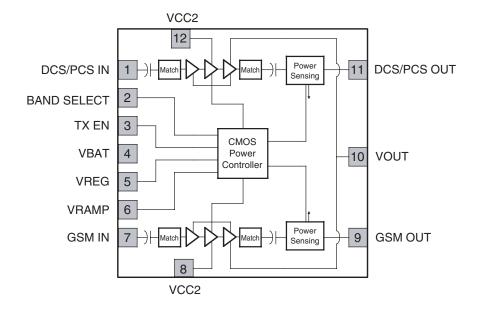


RMPA1850 Quad Band GSM/GPRS Power Amplifier Module


Features

- Quad band, matched module
- High efficiency- 55% GSM850/900, 50% DCS/PCS
- Integrated power control function
- Compact 7*10*1.6mm module
- InGaP HBT technology
- GPRS class 12 capable
- Ruggedness 10:1
- 50 dB power control range

General Description

The RMPA1850 power amplifier module (PAM) is designed for GSM/GPRS cellular handset applications. The PAM a fully input and output 50Ω matched. It also includes integrated power control and band select.

Functional Block Diagram

GSM850/GSM900 BAND

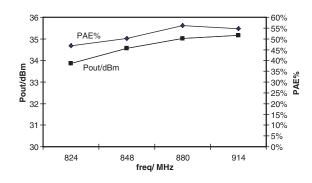
	Specification				
Parameter	Min.	Тур.	Max.	Unit	Condition
Frequency	824		849	MHz	GSM850 band
	880		915	MHz	GSM900 band
Output Power	34	34.5		dBm	GSM850 band
	34.5	35		dBm	GSM900 band
Power Added Efficiency	50	55		%	@ Pout max
Input Power Range	0	3		dBm	
2nd Harmonics			-10	dBm	
3rd Harmonics			-15	dBm	
Forward isolation			-30	dBm	
Cross Isolation			-30	dBm	Vramp, TX_EN = 0.2V, Pin = 5 dBm, @2fo
Input VSWR			2.5:1		
Vramp for Max. Pout		1.4	1.8	V	
Vramp for Min. Pout	0.3			V	
Power control range		50		dB	Vramp = 0.1 to 1.8V
Ruggedness	no permanent damage			Output VSWR = 10:1, Pout ≤ 34.5 dBm	
Stability			-36	dBm	Load 8:1
Output Noise Power, 20 MHz offset	-82 dBm RBW = 100 KHz		RBW = 100 KHz		

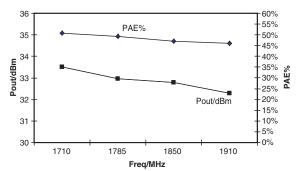
DCS/PCS BAND

	Specification				
Parameter	Min.	Тур.	Max.	Unit	Condition
Frequency	1710		1785	MHz	DCS band
	1850		1910	MHz	PCS band
Output Power	32.5	33		dBm	DCS band
	32	32.5		dBm	PCS band
Power Added Efficiency	45	50		%	@ Pout max
Input Power Range	0	3		dBm	
2nd Harmonics			-15	dBm	
3rd Harmonics			-10	dBm	
Forward isolation			-30	dBm	
Cross Isolation			-20	dBm	Vramp, TX_EN = 0.2V, Pin = 5 dBm, @2fo
Input VSWR			2.5:1		
Vramp for Max. Pout		1.4	1.8	V	
Vramp for Min. Pout	0.3			V	
Power control range		50		dB	Vramp = 0.1 to 1.8V
Ruggedness	no permanent damage			Output VSWR = 10:1,Pout ≤ 32.5dBm	
Stability			-36	dBm	Load 8:1
Noise Power, 20 MHz offset		-82		dBm	RBW = 100 KHz, 20 MHz offset

^{1.} V_{BATT} = 3.5V, V_{REG} = 2.8V, P_{IN} = 3 dBm, TX-EN = high, T = 25°C, 12.5% duty cycle

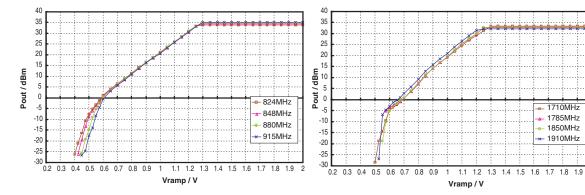
Absolute Ratings


Parameter	Minimum	Maximum	Units
Supply Voltage, V _{BATT}		+6	V
Power Control Voltage		+2.5	V
Input RF Power		+12	dBm
Duty Cycle at Max. Power		50	%
Storage Temperature	-40	+150	°C
Operating Temperature	-30	+85	°C


Recommended Operating Conditions

	Specification			Condition	
Parameter	Min.	Max.	Unit	(Temp = +25°C, Vcc = 3.5V)	
VBAT Supply Voltage	3.0V	3.5V	4.8V		
VBAT Supply Leakage Current		12μΑ		TX_EN = Low	
VREG Voltage	2.7V	2.8V	2.9V		
VREG Current		10mA		TX_EN = High	
		1µA		TX_EN = Low	
TX_EN Logic Level to Enable	1.9V				
TX_EN Logic Level to Disable			0.6V		
Current into TX_EN Pin		0.1μΑ	5μΑ		
Current into Band Select Pin		0.1μΑ	5μΑ		
Band Select Logic Level to enable DCS Band	1.9V				
Band Select Logic Level to enable GSM Band			0.6V		
Vramp Pin Transconductance		83µA/V			

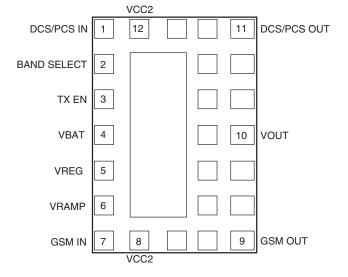
Pout and PAE% vs. Frequency


 V_{BATT} = 3.5V, V_{REG} = 2.8V, P_{IN} = 3 dBm, V_{RAMP} = 1.6V, T = 25°C, 25% duty cycle

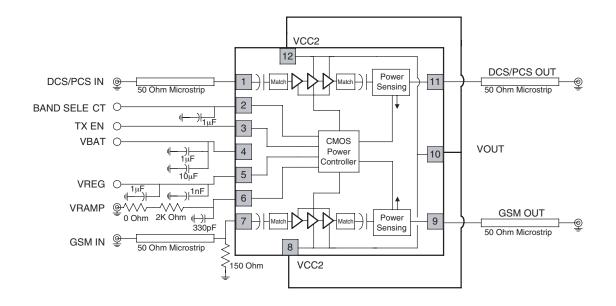
Power Control: Pout vs. V_{RAMP}

 V_{BATT} = 3.5V, V_{REG} = 2.8V, P_{IN} = 3 dBm, T = 25°C, 25% duty cycle

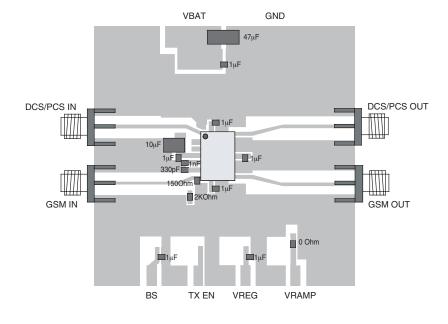
1710MHz


1785MHz

← 1850MHz


<u>⊷</u> 1910MHz

Signal Descriptions


Pin	Function	Description
1	DCS/PCS IN	50Ω RF input of DCS/PCS band.
2	Band Select	Logic high for DCS/PCS and logic low for GSM850/EGSM900 band.
3	TX_EN	Logic high to enable the PA module function.
4	VBAT	Power supply to the PA module. This should be connected to battery. The decoupling capacitor is required to filter the interference.
5	VREG	Normally, 2.8 volts are required at this node for the operation of control circuits.
6	VRAMP	Ramping signal from DAC to control the power level.
7	GSM IN	50Ω RF input of GSM850/EGSM900 band.
8	VCC2	Power supply for the driver stage of the GSM850/EGSM900 band. This is internally connected to VBAT node within the module.
9	GSM OUT	50Ω RF output of GSM850/EGSM900 band.
10	VOUT	Power supply for the power stages of GSM850/EGSM900 and DCS/PCS band. This is internally connected to VBAT node within the module.
11	DCS/PCS OUT	50Ω RF output of DCS/PCS band.
12	VCC2	Power supply for the driver stage of the GSM850/EGSM900 and DCS/PCS band. This is internally connected to VBAT node within the module.

Evaluation Board Schematic

Evaluation Board

Package Outline (All dimensions in mm) RMPA1850 PIN 1 TOP VIEW Outline (All dimensions in mm)

BOTTOM VIEW

0.7

0.7

SIDE VIEW

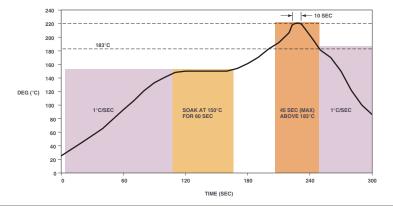
Application Information

CAUTION: THIS IS AN ESD SENSITIVE DEVICE

Precautions to Avoid Permanent Device Damage:

- Cleanliness: Observe proper handling procedures to ensure clean devices and PCBs. Devices should remain in their original packaging until component placement to ensure no contamination or damage to RF, DC & ground contact areas.
- Device Cleaning: Standard board cleaning techniques should not present device problems provided that the boards are properly dried to remove solvents or water residues.
- Static Sensitivity: Follow ESD precautions to protect against ESD damage:
 - A properly grounded static-dissipative surface on which to place devices.
 - · Static-dissipative floor or mat.
 - A properly grounded conductive wrist strap for each person to wear while handling devices.
- General Handling: Handle the package on the top with a vacuum collet or along the edges with a sharp pair of bent tweezers. Avoiding damaging the RF, DC, & ground contacts on the package bottom. Do not apply excessive pressure to the top of the lid.
- Device Storage: Devices are supplied in heat-sealed, moisture-barrier bags. In this condition, devices are protected and require no special storage conditions. Once the sealed bag has been opened, devices should be stored in a dry nitrogen environment.

Device Usage:


Fairchild RF recommends the following procedures prior to assembly.

- Dry-bake devices at 125°C for 24 hours minimum. Note: The shipping trays cannot withstand 125°C baking temperature
- Assemble the dry-baked devices within 7 days of removal from the oven.
 - During the 7-day period, the devices must be stored in an environment of less than 60% relative humidity and a maximum temperature of 30°C
 - If the 7-day period or the environmental conditions have been exceeded, then the dry-bake procedure must be repeated.

Solder Materials & Temperature Profile:

- Reflow soldering is the preferred method of SMT attachment. Hand soldering is not recommended.
 - Reflow Profile
 - Ramp-up: During this stage the solvents are evaporated from the solder paste. Care should be taken to prevent rapid oxidation (or paste slump) and solder bursts caused by violent solvent out-gassing. A typical heating rate is 1-2°C/sec.
 - Pre-heat/soak: The soak temperature stage serves two purposes; the flux is activated and the board and devices achieve a uniform temperature. The recommended soak condition is: 120-150 seconds at 150°C.
 - Reflow Zone: If the temperature is too high, then
 devices may be damaged by mechanical stress due to
 thermal mismatch or there may be problems due to
 excessive solder oxidation. Excessive time at temperature can enhance the formation of inter-metallic compounds at the lead/board interface and may lead to
 early mechanical failure of the joint. Reflow must occur
 prior to the flux being completely driven off. The duration of peak reflow temperature should not exceed 10
 seconds. Maximum soldering temperatures should be
 in the range 215-220°C, with a maximum limit of 225°C.
- Cooling Zone: Steep thermal gradients may give rise to excessive thermal shock. However, rapid cooling promotes a finer grain structure and a more crack-resistant solder joint. The illustration below indicates the recommended soldering profile.
- Solder Joint Characteristics: Proper operation of this device depends on a reliable void-free attachment of the heatsink to the PWB. The solder joint should be 95% void-free and be a consistent thickness.
- Rework Considerations: Rework of a device attached to a board is limited to reflow of the solder with a heat gun. The device should not be subjected to more than 225°C and reflow solder in the molten state for more than 5 seconds. No more than 2 rework operations should be performed.

Recommended Solder Reflow Profile

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST®	ISOPLANAR™	Power247™	Stealth™
ActiveArray™	FASTr™	LittleFET™	PowerEdge™	SuperFET™
Bottomless™	FPS™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CoolFET™	FRFET™	MicroFET™	PowerTrench®	SuperSOT™-6
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QFET®	SuperSOT™-8
DOME™	GTO™ [']	MICROWIRE™	QS TM	SyncFET™
EcoSPARK™	HiSeC™	MSX TM	QT Optoelectronics™	TinyLogic [®]
E ² CMOS TM	I ² C TM	MSXPro™	Quiet Series™	TINYOPTO™
EnSigna™	i-Lo TM	OCX TM	RapidConfigure™	TruTranslation™
FACT™	ImpliedDisconnect™	OCXPro [™]	RapidConnect™	UHC™
FACT Quiet Series [™]		OPTOLOGIC®	μSerDes™	UltraFET®
Across the board. Around the world.™		OPTOPLANAR™	SILENT SWITCHER®	UniFET™
The Power Franchise®		PACMAN™	SMART START™	VCXTM
Programmable Active Droop™		РОР™	SPM™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.		

Rev. 114