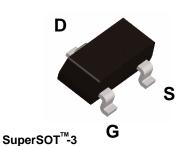
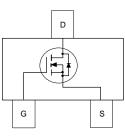
FAIRCHILD

FDN371N

20V N-Channel PowerTrench[®] MOSFET

General Description


This 20V N-Channel MOSFET uses Fairchild's high voltage PowerTrench process. It has been optimized for power management applications.


Applications

- Load switch
- Battery protection
- Power management

Features

- 2.5 A, 20 V. $R_{DS(ON)} = 50 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$ $R_{DS(ON)} = 60 \text{ m}\Omega @ V_{GS} = 2.5 \text{ V}$
- Low gate charge (7.6 nC typical)
- Fast switching speed
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol		Parameter	Ratings	Units		
V _{DSS}	Drain-Sourc	e Voltage		20		
V _{GSS}	Gate-Source Voltage			± 12		
I _D	Drain Current – Continuous (Note 1a			2.5 A		
		– Pulsed		10		
P _D	Power Dissi	pation for Single Operation	(Note 1a)	0.5	W	
			(Note 1b)	0.46		
T _J , T _{STG}	Operating a	nd Storage Junction Tempe	erature Range	–55 to +150 °(
Therma	I Charac	teristics				
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)			250		
R _{eJC}	Thermal Resistance, Junction-to-Case (Note 1)			75		
Packag	e Marking	g and Ordering Ir	nformation			
	e Marking	g and Ordering Ir	nformation Reel Size	Tape width	Quantity	

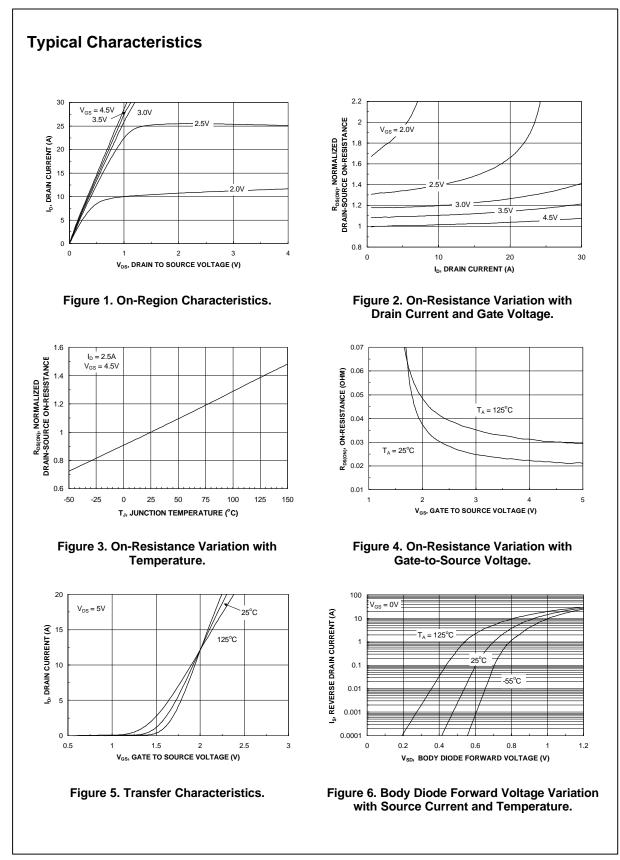
©2001 Fairchild Semiconductor Corporation

FDN371N

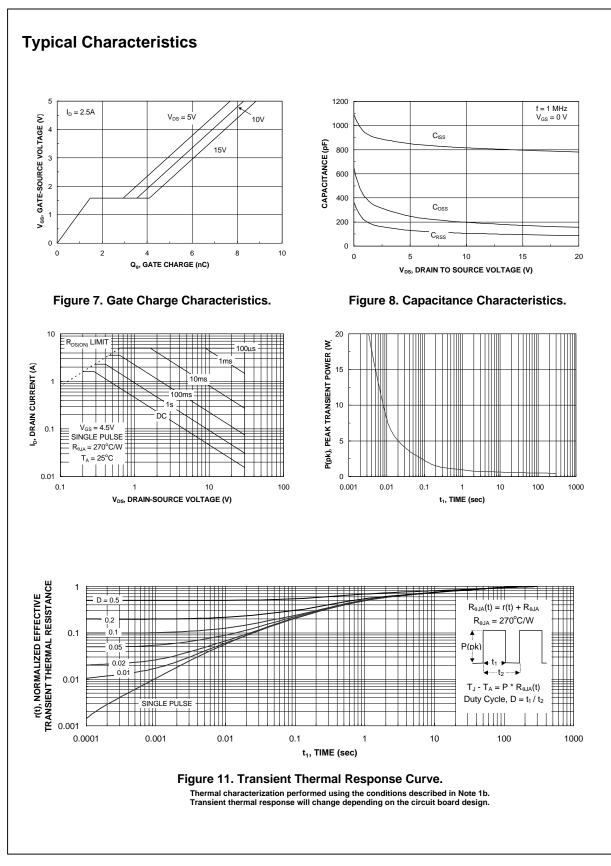
Symbol	Parameter Test Conditions		Min	Тур	Max	Units	
Off Char	acteristics						
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$,	I _D = 250 μA	20			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C}$			13		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 16 V$,	$V_{GS} = 0 V$			1	μΑ
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 12 V$,	$V_{DS} = 0 V$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -12 V$,	$V_{DS} = 0 V$			-100	nA
On Char	acteristics (Note 2)						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$,	I _D = 250 μA	0.5	1.0	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient				-3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = 4.5 V,$ $V_{GS} = 2.5 V,$ $V_{GS} = 4.5 V, I_D = 2$	5		22 29 31	50 60 75	mΩ
I _{D(on)}	On-State Drain Current	$V_{GS} = 4.5V,$		5			А
g fs	Forward Transconductance	$V_{DS} = 5V$,	I _D = 2.5 A		16		S
Dynamic	Characteristics					•	
Ciss	Input Capacitance	$V_{DS} = 10 V$, $V_{GS} = 0 V$, f = 1.0 MHz			815		pF
Coss	Output Capacitance				197		pF
C _{rss}	Reverse Transfer Capacitance				106		pF
Switchin	g Characteristics (Note 2)					•	
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 10 V$, $I_D = 1 A$,			7	14	ns
t _r	Turn–On Rise Time	$V_{GS} = 4.5 V,$	$R_{GEN} = 6 \Omega$		9	18	ns
t _{d(off)}	Turn–Off Delay Time	-			17	31	ns
t _f	Turn–Off Fall Time				5.5	11	ns
Qg	Total Gate Charge	V _{DS} = 10 V,	I _D = 2.5 A,		7.6	10.7	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 4.5 V$			1.5		nC
Q _{gd}	Gate-Drain Charge				2		nC
Drain-S	ource Diode Characteristics	and Maximum	Ratings				
Is	Maximum Continuous Drain–Source Diode Forward Current					0.42	А
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S =$			0.6	1.2	V

 R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

•


a) 250°C/W when mounted on a 0.02 in² pad of 2 oz. copper.

b) 270°C/W when mounted on a minimum pad.


Scale 1 : 1 on letter size paper

<u>,</u>

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

FDN371N

FDN371N

FDN371N Rev C (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ **EcoSPARK™** E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ FAST ® FASTr™ FRFET™ GlobalOptoisolator[™] POP[™] GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC™ OPTOPLANAR™ PACMAN™ Power247™ PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER®

SMART START™ VCX™ STAR*POWER™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation[™] UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.			
	In Design First Production Full Production			