FEATURES

Single-Supply Operation: 4.5 V to 16 V
Input Capability Beyond the Rails
Rail-to-Rail Output Swing
Continuous Output Current: 35 mA
Peak Output Current: 250 mA
Offset Voltage: $\mathbf{1 0} \mathbf{m V}$ Max
Slew Rate: 6 V/ $\mu \mathrm{s}$
Stable with $1 \mu \mathrm{~F}$ Loads
Supply Current

APPLICATIONS

LCD Reference Drivers
Portable Electronics
Communications Equipment

GENERAL DESCRIPTION

The AD8568, AD8569, and AD8570 are low-cost single-supply buffer amplifiers with rail-to-rail input and output capability. They are optimized for LCD monitor applications and built on an advanced high-voltage CBCMOS process. The AD8568 includes two buffers, the AD8569 includes four buffers, and the AD8570 includes eight buffers.

These LCD buffers have high slew rates, 35 mA continuous output drive, and high capacitive load drive capability. They have wide supply range and offset voltages below 10 mV .
The AD8568, AD8569, and AD8570 are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. They are available on tape and reel, with the AD8568 packaged in a 6-lead SOT-23, the AD8569 in a 10-lead MSOP, and the AD8570 in a 32 -lead LFCSP.

PIN CONFIGURATIONS

6-Lead SOT-23
(RT Suffix)

10-Lead MSOP
(RM Suffix)

32-Lead LFCSP (CP Suffix)

NC = NO CONNECT

[^0]AD8568/AD8569/AD8570-SPECIFICATIONS
ELECTRICAL CHARACTERISTICS ($4.5 \mathrm{~V} \leq \mathrm{V}_{S} \leq 16 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{S} / 2, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
INPUT CHARACTERISTICS Offset Voltage Offset Voltage Drift Input Bias Current Input Voltage Range Input Impedance Input Capacitance	V_{OS} $\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$ I_{B} Z_{IN} C_{IN}	$\begin{aligned} & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{aligned}$	-0.5	$\begin{aligned} & 2 \\ & 5 \\ & 80 \\ & \\ & 400 \\ & 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 600 \\ & 800 \\ & \mathrm{~V}_{\mathrm{S}}+0.5 \end{aligned}$	mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ nA nA V $\mathrm{k} \Omega$ pF
OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Continuous Output Current Peak Output Current	$\begin{gathered} \mathrm{V}_{\mathrm{OH}} \\ \\ \\ \mathrm{~V}_{\mathrm{OL}} \\ \\ \\ \mathrm{I}_{\mathrm{OUT}} \\ \mathrm{I}_{\mathrm{PK}} \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{S}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=5 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=5 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{S}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=5 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=5 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \\ & \mathrm{~V}_{\mathrm{S}}=16 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15.85 \\ & 15.75 \\ & 4.2 \\ & 4.1 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}-0.005 \\ & 15.95 \\ & \\ & 4.38 \\ & \\ & 5 \\ & 42 \\ & \\ & 95 \\ & \\ & 35 \\ & 250 \end{aligned}$	$\begin{aligned} & 150 \\ & 250 \\ & 300 \\ & 400 \end{aligned}$	V V V V V mV mV mV mV mV mA mA
TRANSFER CHARACTERISTICS Gain Gain Linearity	$\begin{aligned} & \mathrm{A}_{\mathrm{VCL}} \\ & \mathrm{NL} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=0.5 \text { to }\left(\mathrm{V}_{\mathrm{S}}-0.5 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & 0.995 \\ & 0.995 \end{aligned}$	$\begin{aligned} & 0.9985 \\ & 0.9980 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 1.005 \\ & 1.005 \end{aligned}$	$\begin{aligned} & \text { V/V } \\ & \text { V/V } \\ & \% \end{aligned}$
POWER SUPPLY Supply Voltage Power Supply Rejection Ratio Supply Current/Amplifier	V_{S} PSRR I_{SY}	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=4 \mathrm{~V} \text { to } 17 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{S}} / 2, \text { No Load } \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 70 \end{aligned}$	$\begin{aligned} & 90 \\ & 700 \end{aligned}$	16 850 1	V dB $\mu \mathrm{A}$ mA
DYNAMIC PERFORMANCE Slew Rate Bandwidth Phase Margin Channel Separation	$\begin{aligned} & \text { SR } \\ & \text { BW } \\ & \text { Øo } \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF} \\ & -3 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 6 \\ & 6 \\ & 65 \\ & 75 \end{aligned}$		V/ $\mu \mathrm{s}$ MHz Degrees dB
NOISE PERFORMANCE Voltage Noise Density Current Noise Density	$\begin{aligned} & \mathrm{e}_{\mathrm{n}} \\ & \mathrm{e}_{\mathrm{n}} \\ & \mathrm{i}_{\mathrm{n}} \end{aligned}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=10 \mathrm{kHz} \\ & \mathrm{f}=10 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 26 \\ & 25 \\ & 0.8 \end{aligned}$		$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage (VS)	V
Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{S}}+0.5 \mathrm{~V}$
Differential Input Voltage	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range (Sold	$300^{\circ} \mathrm{C}$

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}{ }^{\mathbf{1}}$	$\boldsymbol{\theta}_{\mathbf{J C}}$	$\boldsymbol{\Psi}_{\mathbf{J B}}{ }^{\mathbf{2}}$	Unit
6-Lead SOT-23 (RT)	250	140		${ }^{\circ} \mathrm{C} / \mathrm{W}$
10-Lead MSOP (RM)	200	44		${ }^{\circ} \mathrm{C} / \mathrm{W}$
32-Lead LFCSP (CP)	35		13	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES

${ }^{1} \theta_{\mathrm{JA}}$ is specified for worst case conditions, i.e., θ_{JA} is specified for device soldered onto a circuit board for surface mount packages.
${ }^{2} \Psi_{\mathrm{JB}}$ is applied for calculating the junction temperature by reference to the board temperature.

ORDERING GUIDE

Model *	Temperature Range	Package Description	Package Option	Branding Information
AD8568ART	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6-Lead SOT-23	RT-6	AWA
AD8569ARM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Lead MSOP	RM-10	AXA
AD8570ACP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32-Lead LFCSP	CP-32	

*Available in reels only.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD8568/AD8569/AD8570 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

AD8568/AD8569/AD8570-Typical Performance Characteristics

TPC 1. Input Offset Voltage Distribution

TPC 2. Input Offset Voltage Drift Distribution

TPC 3. Input Offset Voltage vs. Temperature

TPC 4. Input Bias Current vs. Temperature

TPC 5. Input Offset Current vs. Temperature

TPC 6. Output Voltage Swing vs. Temperature

TPC 7. Output Voltage Swing vs. Temperature

TPC 8. Voltage Gain vs. Temperature

TPC 9. Output Voltage to Supply Rail vs. Load Current

TPC 10. Supply Current/Amplifier vs. Temperature

TPC 11. Slew Rate vs. Temperature

TPC 12. Supply Current/Amplifier vs. Supply Voltage

TPC 13. Frequency Response vs. Resistive Loading

TPC 14. Frequency Response vs. Capacitive Loading

TPC 15. Closed-Loop Output Impedance vs. Frequency

TPC 16. Closed-Loop Output Swing vs. Frequency

TPC 17. Power Supply Rejection Ratio vs. Frequency

TPC 18. Power Supply Rejection Ratio vs. Frequency

TPC 19. Voltage Noise Density vs. Frequency

TPC 20. Channel Separation vs. Frequency

TPC 21. Small Signal Overshoot vs. Load Capacitance

TPC 22. Small Signal Overshoot vs. Load Capacitance

TPC 23. Settling Time vs. Step Size

TIME-2 $\mu \mathrm{s} / \mathrm{DIV}$
TPC 24. Large Signal Transient Response

TIME-2 $\mu \mathrm{s} / \mathrm{DIV}$
TPC 25. Large Signal Transient Response

TIME-1 $\mu \mathrm{s} /$ DIV
TPC 26. Small Signal Transient Response

TPC 27. Small Signal Transient Response

TIME - 40 $\mu \mathrm{s} / \mathrm{DIV}$
TPC 28. No Phase Reversal

APPLICATIONS

Theory of Operation

This family of buffers is designed to drive large capacitive loads in LCD applications. Each has high output current drive, rail-to-rail input/output operation and can be powered from a single 16 V supply. They are also intended for other applications where low distortion and high output current drive are needed.

Input Overvoltage Protection

As with any semiconductor device, whenever the input exceeds either supply voltage, attention needs to be paid to the input overvoltage characteristics. As an overvoltage occurs, the amplifier could be damaged, depending on the voltage level and the magnitude of the fault current. When the input voltage exceeds either supply by more than 0.6 V , internal pin junctions will allow current to flow from the input to the supplies.
This input current is not inherently damaging to the device as long as it is limited to 5 mA or less. If a condition exists using the buffers where the input exceeds the supply by more than 0.6 V , a series external resistor should be added. The size of the resistor can be calculated by using the maximum overvoltage divided by 5 mA . This resistance should be placed in series with the input exposed to an overvoltage.

Output Phase Reversal

The buffer family is immune to phase reversal. Although the device's output will not change phase, large currents due to input overvoltage could damage the device. In applications where the possibility exists of an input voltage exceeding the supply voltage, overvoltage protection should be used as described in the previous section.

Power Dissipation

The maximum allowable internal junction temperature of $150^{\circ} \mathrm{C}$ limits the buffer family Maximum Power Dissipation. As the ambient temperature increases, the maximum power dissipated by the buffer family must decrease linearly to maintain the maximum junction temperature. If this maximum junction temperature is exceeded momentarily, the part will still operate properly once the junction temperature is reduced below $150^{\circ} \mathrm{C}$. If the maximum junction temperature is exceeded for an extended period of time, overheating could lead to permanent damage of the device.
The maximum safe junction temperature, $\mathrm{T}_{\text {JMAX }}$, is $150^{\circ} \mathrm{C}$. Using the following formula, we can obtain the maximum power that the buffer family can safely dissipate as a function of temperature.

$$
P_{D I S S}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}
$$

where:
$P_{\text {DISS }}=$ Power dissipation
$T_{\text {JMAX }}=$ Maximum allowable junction temp $\left(150^{\circ} \mathrm{C}\right)$
$T_{A}=$ Ambient temperature of the circuit
$\theta_{J A}=\mathrm{AD} 856 \mathrm{x}$ package thermal resistance, junction-to-ambient
The power dissipated by the device can be calculated as

$$
P_{D I S S}=\left(V_{S}-V_{O U T}\right) \times I_{L O A D}
$$

where:
$V_{S}=$ supply voltage
$V_{\text {OUT }}=$ output voltage
$I_{L O A D}=$ output load current

Figure 1 shows the maximum power dissipation versus temperature. To achieve proper operation, use the previous equation to calculate $\mathrm{P}_{\text {DIss }}$ for a specific package at any given temperature, or see Figure 1.

Figure 1. Maximum Power Dissipation vs. Temperature for 6- and 10-Lead Packages

THD + N

The buffer family features low total harmonic distortion. Figure 2 shows a graph of THD +N versus frequency. The Total Harmonic Distortion plus Noise for the buffer over the entire supply range is below 0.08%. When the device is powered from a 16 V supply, the THD +N stays below 0.03%. Figure 2 shows the AD8568 THD + N versus frequency performance.

Figure 2. AD8568 THD $+N$ vs. Frequency

Short Circuit Output Conditions

The buffer family does not have internal short circuit protection circuitry. As a precautionary measure, do not short the output directly to the positive power supply or to ground.
It is not recommended to operate the AD856x with more than 35 mA of continuous output current. The output current can be limited by placing a series resistor at the output of the amplifier whose value can be derived using the following equation:

$$
R_{X} \geq \frac{V_{S}}{35 m A}
$$

For a 5 V single supply operation, R_{X} should have a minimum value of 143Ω.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

32-Lead LFCSP (CP Suffix)

Revision History

Location

Page
Data Sheet changed from REV. 0 to REV. A.
Finalization of LFCSP Package . Universal

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

