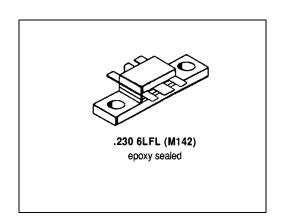
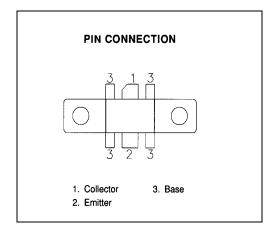


140 COMMERCE DRIVE MONTGOMERYVILLE, PA 18936-1013


PHONE: (215) 631-9840 FAX: (215) 631-9855

MS1451

RF & MICROWAVE TRANSISTORS 800-960 MHz BASE STATION APPLICATIONS


Features

- 800-960 MHz
- 24 VOLTS
- CLASS AB LINEAR OPERATION
- Pout = 15 WATTS
- $G_P = 8.0 \text{ dB MINIMUM}$
- COMMON EMITTER CONFIGURATION

DESCRIPTION:

The MS1451 is a gold metallized silicon NPN planar transistor designed for high linearity Class AB operation in cellular base station applications. The MS1451 is designed as a medium power output device or as the driver for MS1452. Diffused emitter ballast resistors provide thermal stability and reliability under Class AB linear operation.

ABSOLUTE MAXIMUM RATINGS (Tcase = 25°C)

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	48	V
V _{CEO}	Collector-Emitter Voltage	30	V
V _{CES}	Collector-Emitter Voltage	45	V
V_{EBO}	Emitter-Base Voltage	3.5	V
P _{DISS}	Power Dissipation	29	W
Ic	Device Current	2.5	Α
T J	Junction Temperature	+200	°C
T _{STG}	Storage Temperature	-65 to +150	°C

Thermal Data

(v o)		R _{TH(J-C)}	Thermal Resistance Junction-case	6.0	°C/W
-------	--	----------------------	----------------------------------	-----	------

MS1451

ELECTRICAL SPECIFICATIONS (Tcase = 25°C)

STATIC

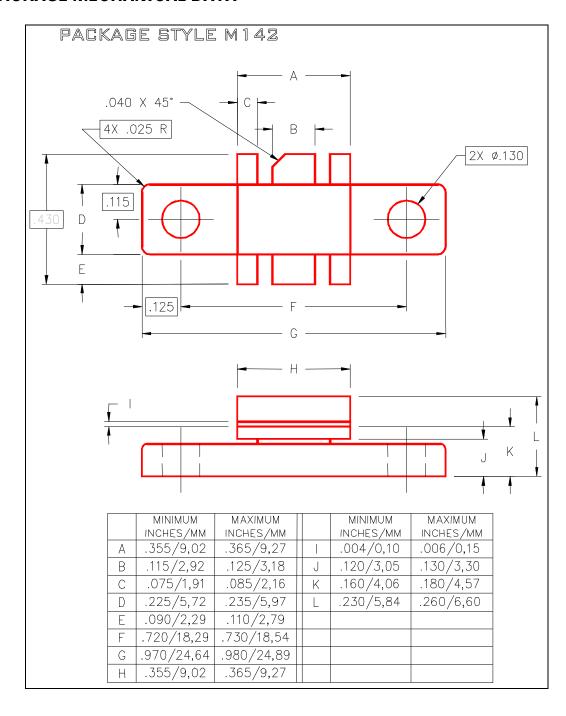
Symbol	Test Conditions			Value		
Syllibol			Min.	Typ.	Max.	Unit
BVcbo	$I_C = 50 \text{ mA}$	$I_E = 0 \text{ mA}$	48			V
BVceo	I _C = 20 mA	I _B =0 mA	25			V
BVebo	I _E = 5 mA	I _C = 0 mA	3.5			V
Icbo	V _{CB} = 24 V	I _E = 0 mA			1.0	mA
H _{FE}	V _{CE} = 10 V	I _C = 100mA	20		100	

DYNAMIC

Symbol	ol Test Conditions			Value		Unit	
Syllibol			Min.	Typ.	Max.	Offic	
P _{out}	f = 960 MHz	$P_{IN} = 2.4W$	$V_{CC} = 24V$	15			w
G _P	f = 960 MHz	$P_{IN} = 2.4W$	$V_{CC} = 24V$	8			dB
ης	f = 960 MHz	$P_{IN} = 2.4 W$	$V_{CC} = 24V$	45			%
C _{ob}	f = 1 MHz	$V_{CB} = 24V$				24	pf

Conditions: VCC = 24 V ICQ = 75 mA

IMPEDANCE DATA


FREQ	$Z_{IN}\!(\Omega)$	$Z_{CL}(\Omega)$				
900 MHz	1.3 + j1.98	4.0 + j5.5				
930 MHz	1.42 + j2.3	3.18 + j5.0				
960 MHz	1.45 + j2.62	2.96 + j4.07				

 $P_{OUT} = 15W$ $V_{CE} = 24V$ $I_{CQ} = 75mA$

PACKAGE MECHANICAL DATA

