## 20-BIT TWO PORT BUS SWITCH WITH FOUR ENABLE CONTROL

PRELIMINARY DATA

- HIGH SPEED: $t_{P D}=0.25 \mathrm{~ns}$ (MAX.) at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
- ON RESISTANCE BETWEEN TWO PORT: $5 \Omega$ (TYP) at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- LOW POWER DISSIPATION: $\mathrm{I}_{\mathrm{CC}}=1 \mathrm{uA}(\mathrm{MAX}$.$) at \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- COMPATIBLE WITH TTL OUTPUTS: $\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}(\mathrm{MIN}), \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}(\mathrm{MAX})$
- POWER DOWN PROTECTION ON INPUTS AND OUTPUTS
- OPERATING VOLTAGE RANGE: $\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=4 \mathrm{~V}$ to 5.5 V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 16862
- IMPROVED LATCH-UP IMMUNITY
- ESD PERFORMANCE:

HBM $>2000 V$ (MIL STD 883 method 3015); $M M>200 V$

## DESCRIPTION

The B5S16862 is an advanced high-speed CMOS 20-BIT TWO PORT BUS SWITCH fabricated with sub-micron silicon gate and double-layer metal wiring $\mathrm{C}^{2} \mathrm{MOS}$ tecnology.
It is ideal for 4 V to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ operations and ultra-low power and low noise applications, typically notebook and docking station.
Any $\overline{n G}$ output control governs four 5-bit BUS SWITCHES. Output Enable inputs ( $\overline{\mathrm{nG})}$ tied together gives full 20-bit operations. When $\overline{n G}$ is LOW, the switches are on. When $\overline{\mathrm{nG}}$ is HIGH, the switches are in high impedance state.
It has ultra high-speed performance at 5 V near zero delay with low ON resistance.
All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.


## ORDER CODES

| PACKAGE | T \& R |
| :---: | :---: |
| TSSOP48 | B5S16862TTR |

## PIN CONNECTION

| 2 G | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |

INPUT EQUIVALENT CIRCUIT


CS11300

## PIN DESCRIPTION

| PIN No | SYMBOL | NAME QND FUNCTION |
| :---: | :---: | :--- |
| 1,13 | $\overline{2 \mathrm{G}} \overline{4 \mathrm{G}}$ | Bus Enable Input <br> (Active Low) |
| $2,3,4,5,6,7$, <br> $8,9,10,11$ | 1 A 0 to 1 A 9 | Data Inputs |
| $14,15,16,17$, <br> $18,19,20,21$, <br> 22,23 | 2 A 0 to 2 A 9 | Data Inputs |
| $34,33,32,31$, <br> $30,29,28,27$, <br> 26,25 | 2 B 0 to $2 \mathrm{B9}$ | Data Outputs |
| $46,45,44,43$, <br> $42,41,40,39$, <br> 38,37 | 1 B 0 to $1 \mathrm{B9}$ | Data Outputs |
| 47,35 | $\overline{1 \mathrm{G}}, \overline{3 \mathrm{G}}$ | Bus Enable Input <br> (Active Low) |
| 12,24 | GND | Ground (0V) |
| 36,48 | V CC | Positive Supply Voltage |

TRUTH TABLE

| INPUT |  | OUTPUT |
| :---: | :---: | :---: |
| $\overline{\mathrm{yG}}$ | $\mathbf{1 A n}, \mathbf{2 A n}$ | $\mathbf{1 B n}, \mathbf{2 B n}$ |
| L | X | Bus ON |
| H | X | Z |

$y$ : 1 to 4
$y$ : 1 , active on $1 \mathrm{An}, 1 \mathrm{Bn}$ port only with $\mathrm{n}: 0$ to 4
$y$ : 2, active on $1 \mathrm{An}, 1 \mathrm{Bn}$ port only with $\mathrm{n}: 5$ to 9
$\mathrm{y}: 3$, active on $2 \mathrm{An}, 2 \mathrm{Bn}$ port only with $\mathrm{n}: 0$ to 4
$y: 4$, active on $2 A n, 2 B n$ port only with $n: 5$ to 9
X: "H" or "L"
Z: High Impedance

## SCHEMATIC DIAGRAM



## ABSOLUTE MAXIMUM RATINGS

| Symbol | Parameter $^{2}$ | Value | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | -0.5 to +7.0 | V |
| $\mathrm{~V}_{\mathrm{I}}$ | DC Switch and Control Pin Voltage | -0.5 to +7.0 | V |
| $\mathrm{~V}_{\mathrm{O}}$ | DC Output Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$ (note 1) | -0.5 to +7.0 | V |
| $\mathrm{~V}_{\mathrm{O}}$ | DC Output Voltage ( $\left.\mathrm{V}_{\mathrm{I} / \mathrm{O}}=\mathrm{Gnd}\right)$ | -0.5 to +7.0 | V |
| $\mathrm{I}_{\mathrm{IK}}$ | DC Input Diode Current $\left(\mathrm{V}_{\mathrm{I} / \mathrm{O}}<0 \mathrm{~V}\right)$ | -50 | mA |
| $\mathrm{I}_{\mathrm{OK}}$ | DC Output Diode Current (note 2) | -50 | mA |
| $\mathrm{I}_{\mathrm{O}}$ | DC Output Current (note 3) | 128 | mA |
| $\mathrm{I}_{\mathrm{CC}}$ or $\mathrm{I}_{\mathrm{GND}}$ | DC $\mathrm{V}_{\mathrm{CC}}$ or Ground Current per Supply Pin | $\pm 100$ | mA |
| $\mathrm{~T}_{\mathrm{stg}}$ | Storage Temperature | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Lead Temperature (10 sec) | 300 | ${ }^{\circ} \mathrm{C}$ |

Absolute Maximum Rating are those value beyond which damage to the device may occour. Functional operation under these condition is not implied

1) I I absolute maximum rating must be observed
2) $V_{O}<G N D, V_{O}>V_{C C}$
3) Not more than one output should be tested at one time. Duration of the test should not exceed one second.

## RECOMMENDED OPERATING CONDITIONS

| Symbol | Parameter | Value | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | 4 to 5.5 | V |
| $\mathrm{~V}_{\mathrm{I}}$ | Input Voltage | 0 to 5.5 | V |
| $\mathrm{~V}_{\mathrm{O}}$ | Output Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$ | 0 to 5.5 | V |
| $\mathrm{~V}_{\mathrm{O}}$ | Output Voltage | 0 to 5.5 | V |
| $\mathrm{~T}_{\mathrm{op}}$ | Operating Temperqture | -55 to 125 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{dt} / \mathrm{dv}$ | Switch Input Rise and Fall Time | 0 to DC | $\mathrm{ns} / \mathrm{V}$ |
| $\mathrm{dt} / \mathrm{dv}$ | Control Input Rise and Fall Time (note 1) | 0 to 10 | $\mathrm{~ns} / \mathrm{V}$ |

1) $\mathrm{V}_{\mathrm{IN}}$ from 0.8 V to 2 V at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

## DC SPECIFICATION

| Symbol | Parameter | Test Condition |  | Value |  |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $V_{c c}$ <br> (V) |  | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | $\begin{gathered} -40 \text { to } 85 \\ { }^{\circ} \mathrm{C} \end{gathered}$ |  | $\begin{array}{\|l} -55 \text { to } 125 \\ { }^{\circ} \mathrm{C} \end{array}$ |  |  |
|  |  |  |  | Min. | Typ. | Max. | Min. | Max. | Min. | Max. |  |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 4 to 5.5 |  | 2 |  |  | 2 |  | 2 |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage | 4 to 5.5 |  |  |  | 0.8 |  | 0.8 |  | 0.8 | V |
| $\mathrm{V}_{\mathrm{H}}$ | Input Hysteresis at Control pin | 4.5 to 5.5 |  |  | 150 |  |  |  |  |  | mV |
| $\mathrm{R}_{\mathrm{ON}}$ | Switch ON Resistance | 4.5 | $\begin{gathered} \mathrm{I}_{\mathrm{ON}}=64 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{l}}=0 \mathrm{~V} \end{gathered}$ |  |  |  |  | 7 |  |  | $\Omega$ |
|  |  | 4.5 | $\begin{gathered} \mathrm{I}_{\mathrm{ON}}=48 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V} \end{gathered}$ |  | 5 |  |  | 7 |  |  |  |
|  |  | 4.5 | $\begin{gathered} \hline \mathrm{I}_{\mathrm{ON}}=15 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{I}}=2.4 \mathrm{~V} \end{gathered}$ |  | 10 |  |  | 15 |  |  |  |
|  |  | 4.0 | $\begin{gathered} \hline \mathrm{I}_{\mathrm{ON}}=15 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{I}}=2.4 \mathrm{~V} \end{gathered}$ |  | 14 |  |  | 22 |  |  |  |
| 1 | Input Leakage Current | 0 to 5.5 | $\begin{gathered} \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V} \text { or } \\ \text { GND } \end{gathered}$ |  |  | $\pm 0.1$ |  | $\pm 1.0$ |  | $\pm 2.0$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {OZ }}$ | High Impedance Leakage Current | 4.5 to 5.5 | $\begin{aligned} & \mathrm{V}_{I \mathrm{O}}=5.5 \mathrm{~V} \\ & \text { to GND } \end{aligned}$ |  |  |  |  | $\pm 1.0$ |  | $\pm 2.0$ | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{IK}}$ | Clamp Diode Voltage | 4.0 to 5.5 | $\mathrm{I}_{1}=-18 \mathrm{~mA}$ |  | -0.7 |  |  | -1.2 |  | -1.2 | V |
| $I_{\text {cc }}$ | Quiescent Supply Current | 5.5 | $\begin{gathered} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ \text { GND } \end{gathered}$ |  | 0.1 | 1.0 |  | 3.0 |  | 10.0 | $\mu \mathrm{A}$ |
| $I_{\text {CCD }}$ | Supply Current per Control Input per MHz (1) | 5.5 | $\begin{aligned} & \mathrm{V}_{1 / \mathrm{O}}=\mathrm{Open} \\ & \mathrm{nG}=\mathrm{GND} ; \end{aligned}$ <br> Control Input Toggling 50\% Duty Cycle |  |  |  |  | 0.25 |  |  | $\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$ |
| ${ }^{\text {l }}$ CC | ${ }^{\text {I CC }}$ incr. per Input | 5.5 | $\begin{gathered} \mathrm{V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{CC}}-2.1 \\ \mathrm{~V} \end{gathered}$ |  |  |  |  | 2.5 |  |  | mA |

1) This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The 1 An and 2An inputs generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design.

## AC ELECTRICAL CHARACTERISTICS

| Symbol | Parameter | Test Condition |  |  |  | Value |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{c c} \\ & \text { (V) } \end{aligned}$ | $\begin{gathered} C_{L} \\ (\mathrm{pF}) \end{gathered}$ | $\begin{aligned} & \mathbf{R}_{\mathrm{L}} \\ & (\Omega) \end{aligned}$ | $\begin{aligned} & t_{s}=t_{r} \\ & \text { (ns) } \end{aligned}$ | -40 to $85{ }^{\circ} \mathrm{C}$ |  | -55 to $125^{\circ} \mathrm{C}$ |  |  |
|  |  |  |  |  |  | Min. | Max. | Min. | Max. |  |
| $\mathrm{t}_{\text {PLH }} \mathrm{t}_{\text {PHL }}$ | Propagation Delay Time (1) <br> $x A n$ to $x B n, x B n$ to $x A n(2)$ | 4.5 to 5.5 | 50 | 500 | 2.5 |  | 0.25 |  |  | ns |
| $t_{\text {PZL }} \mathrm{t}_{\text {PZH }}$ | Output Enable Time |  | 50 | 500 | 2.5 | 1.5 | 5.5 |  |  | ns |
| $\mathrm{t}_{\text {PLZ }} \mathrm{t}_{\text {PHZ }}$ | Output Disable Time |  | 50 | 500 | 2.5 | 1.5 | 5.5 |  |  | ns |

1) Parameter guaranteed by design
2) $X=1,2 ; n=0 . .9$.

## CAPACITANCE CHARACTERISTICS



## TEST CIRCUIT



| TEST | SWITCH |
| :--- | :---: |
| $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ | Open |
| $\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$ | 7 V |
| $\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\mathrm{PHZ}}$ | Open |

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically $50 \Omega$ )

WAVEFORM 1: PROPAGATION DELAY ( $\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)


WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIME ( $\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)


TSSOP48 MECHANICAL DATA

| DIM. | mm. |  |  | inch |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN. | TYP | MAX. | MIN. | TYP. | MAX. |
| A |  |  | 1.2 |  |  | 0.047 |
| A1 | 0.05 |  | 0.15 | 0.002 |  | 0.006 |
| A2 |  | 0.9 |  |  | 0.035 |  |
| b | 0.17 |  | 0.27 | 0.0067 |  | 0.011 |
| c | 0.09 |  | 0.20 | 0.0035 |  | 0.0079 |
| D | 12.4 |  | 12.6 | 0.488 |  | 0.496 |
| E |  | 8.1 BSC |  |  | 0.318 BSC |  |
| E1 | 6.0 |  | 6.2 | 0.236 |  | 0.244 |
| e |  | 0.5 BSC |  |  | 0.0197 BSC |  |
| K | $0^{\circ}$ |  | $8^{\circ}$ | $0^{\circ}$ |  | $8^{\circ}$ |
| L | 0.50 |  | 0.75 | 0.020 |  | 0.030 |



Tape \& Reel TSSOP48 MECHANICAL DATA

| DIM. | mm. |  |  | inch |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN. | TYP | MAX. | MIN. | TYP. | MAX. |
| A |  |  | 330 |  |  | 12.992 |
| C | 12.8 |  | 13.2 | 0.504 |  | 0.519 |
| D | 20.2 |  |  | 0.795 |  |  |
| N | 60 |  | 30.4 |  |  |  |
| T |  |  | 8.9 | 0.343 |  | 0.362 |
| Ao | 8.7 |  | 13.3 | 0.516 |  | 0.524 |
| Bo | 13.1 |  | 1.7 | 0.059 |  | 0.067 |
| Ko | 1.5 |  | 4.1 | 0.153 |  | 0.161 |
| Po | 3.9 |  | 12.1 | 0.468 |  | 0.476 |
| P | 11.9 |  |  |  |  |  |



Note: Drawing not in scale

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© $\mathbf{2 0 0 3}$ STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com

