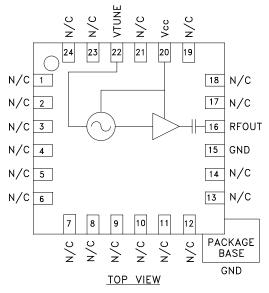


HMC384LP4


MMIC VCO w/ BUFFER **AMPLIFIER**, 2.05 - 2.25 GHz

Typical Applications

Low noise MMIC VCO w/Buffer Amplifier for:

- Wireless Infrastructure
- Industrial Controls
- Test Equipment
- Military

Functional Diagram

Features

Pout: +3.5 dBm

Phase Noise: -112 dBc/Hz @100 KHz

No External Resonator Needed

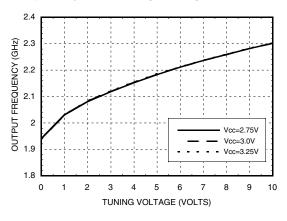
Single Supply: 3V @ 35 mA

QFN Leadless SMT Package, 16 mm²

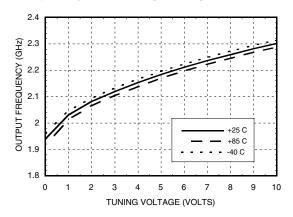
General Description

The HMC384LP4 is a GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCO with integrated resonator, negative resistance device, varactor diode, and buffer amplifier. The VCO's phase noise performance is excellent over temperature, shock, vibration and process due to the oscillator's monolithic structure. Power output is 3.5 dBm typical from a 3.0V supply voltage. The voltage controlled oscillator is packaged in a low cost leadless QFN 4 x 4 mm surface mount package.

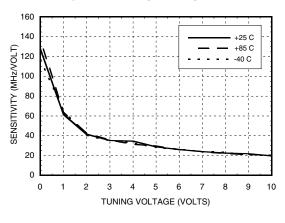
Electrical Specifications, $T_A = +25^{\circ} C$, Vcc = +3V

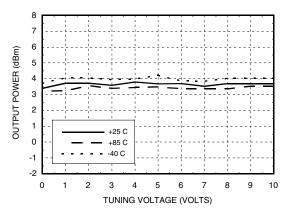

Parameter	Min.	Тур.	Max.	Units
Frequency Range	2.05 - 2.25		GHz	
Power Output	0.5	3.5		dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RF Output		-112		dBc/Hz
Tune Voltage (Vtune)	0		10	V
Supply Current (Icc) (Vcc = +3.0V)		35		mA
Tune Port Leakage Current			10	μА
Output Return Loss		6		dB
Harmonics 2nd 3rd		-7 -23		dBc dBc
Pulling (into a 2.0:1 VSWR)		2.5		MHz pp
Pushing @ Vtune= +5V		5		MHz/V
Frequency Drift Rate		0.25		MHz/°C

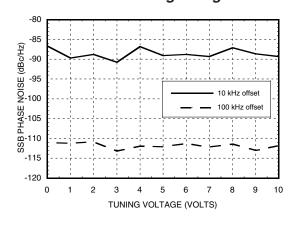
15

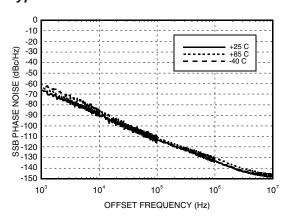


MMIC VCO w/ BUFFER AMPLIFIER, 2.05 - 2.25 GHz


Frequency vs. Tuning Voltage, T= 25°C


Frequency vs. Tuning Voltage, Vcc= +3V


Sensitivity vs. Tuning Voltage, Vcc= +3V

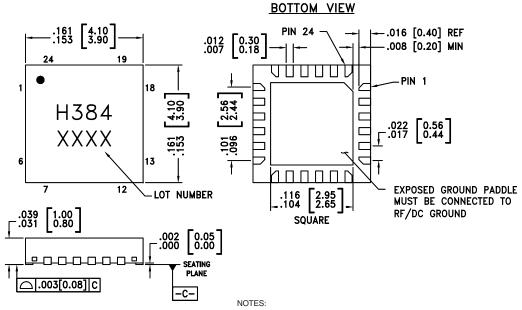

Output Power vs.
Tuning Voltage, Vcc= +3V

Phase Noise vs. Tuning Voltage

Typical SSB Phase Noise @ Vtune= +5V

MMIC VCO w/ BUFFER AMPLIFIER, 2.05 - 2.25 GHz

Absolute Maximum Ratings


Vcc	+3.5 Vdc	
Vtune	0 to +11V	
Channel Temperature	135 °C	
Continuous Pdiss (T = 85°C) (derate 6.28 mW/°C above 85°C)	565 W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
2.75	28
3.0	35
3.25	41

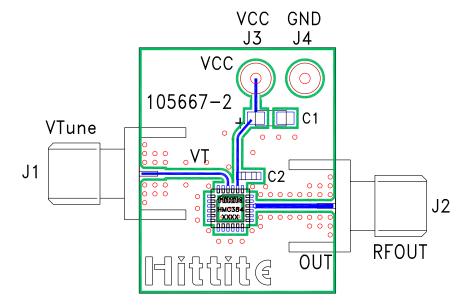
Note: VCO will operate over full voltage range shown above.

Outline Drawing

- MATERIAL PACKAGE BODY: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEAD AND GROUND PADDLE MATERIAL: COPPER ALLOY
- 3. LEAD AND GROUND PADDLE PLATING: Sn/Pb SOLDER
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 5. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
 PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 7. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 8. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 9. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

MMIC VCO w/ BUFFER AMPLIFIER, 2.05 - 2.25 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1- 14, 17 - 19, 21, 23, 24	N/C	No Connection	
15	GND	This pin must be connected to RF & DC ground.	<u> </u>
16	RFOUT	RF output (AC coupled)	—
20	Vcc	Supply Voltage Vcc= 3V	Vcc 0 26pF
22	VTUNE	Control Voltage Input. Modulation port bandwidth dependent on drive source impedance.	7.5nH 1500 VTUNE 0
	GND	Package bottom has an exposed metal paddle that must be RF & DC grounded.	

15

MMIC VCO w/ BUFFER AMPLIFIER, 2.05 - 2.25 GHz

Evaluation PCB

List of Materials

Item	Description	
J1 - J2	PC Mount SMA RF Connector	
J3 - J4	DC Pin	
C1	4.7 μF Tantalum Capacitor	
C2	10,000 pF Capacitor, 0603 Pkg.	
U1	HMC384LP4 VCO	
PCB*	105667 Eval Board	
* Circuit Board Material: Rogers 4350		

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

v01.0604

MMIC VCO w/ BUFFER **AMPLIFIER**, 2.05 - 2.25 GHz

Notes: