Preferred Device

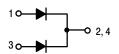
# **SWITCHMODE™ Dual Schottky Power Rectifier**

The MBR2030CTL employs the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for use as rectifiers in very low-voltage, high-frequency switching power supplies, free wheeling diodes and polarity protection diodes.

#### **Features**

- Pb-Free Package is Available\*
- Highly Stable Oxide Passivated Junction
- Very Low Forward Voltage Drop (0.4 Max @ 10 A, T<sub>C</sub> = 150°C)
- 150°C Operating Junction Temperature
- Matched Dual Die Construction (10 A per Leg or 20 A per Package)
- High Junction Temperature Capability
- High dv/dt Capability
- Excellent Ability to Withstand Reverse Avalanche Energy Transients
- Guardring for Stress Protection
- Epoxy Meets UL 94, V-0 @ 0.125 in

#### **Mechanical Characteristics**


- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds



ON Semiconductor®

http://onsemi.com


# SCHOTTKY BARRIER RECTIFIER 20 AMPERES 30 VOLTS



#### MARKING DIAGRAM



TO-220AB CASE 221A PLASTIC



A = Assembly Location

Y = Year WW = Work Week B2030 = Device Code

#### **ORDERING INFORMATION**

| Device      | Package             | Shipping      |
|-------------|---------------------|---------------|
| MBR2030CTL  | TO-220              | 50 Units/Tube |
| MBR2030CTLG | TO-220<br>(Pb-Free) | 50 Units/Tube |

**Preferred** devices are recommended choices for future use and best overall value.

<sup>\*</sup>For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### MAXIMUM RATINGS (Per Leg)

| Rating                                                                                                  | Symbol                                                 | Value        | Unit |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------|------|
| Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage                        | V <sub>RRM</sub><br>V <sub>RWM</sub><br>V <sub>R</sub> | 30           | V    |
| Average Rectified Forward Current                                                                       | I <sub>F(AV)</sub>                                     | 10           | Α    |
| Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz) | I <sub>FSM</sub>                                       | 150          | Α    |
| Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)                                                 |                                                        | 1.0          | А    |
| Operating Junction Temperature                                                                          | T <sub>J</sub>                                         | -65 to +150  | °C   |
| Storage Temperature                                                                                     | T <sub>stg</sub>                                       | - 65 to +175 | °C   |
| Voltage Rate of Change (Rated V <sub>R</sub> )                                                          | dv/dt                                                  | 1000         | V/μs |

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

#### THERMAL CHARACTERISTICS (Per Leg)

| THERMAL CHARACTERISTICS (Per Leg)                                                                                                                                                                                                                                                                |                |                              |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------|------|
| Thermal Resistance, Junction-to-Case                                                                                                                                                                                                                                                             | $R_{	heta JC}$ | 2.0                          | °C/W |
| ELECTRICAL CHARACTERISTICS (Per Leg)                                                                                                                                                                                                                                                             |                |                              |      |
| Maximum Instantaneous Forward Voltage (Note 1)<br>( $i_F = 10 \text{ Amps}$ , $T_C = 25^{\circ}\text{C}$ )<br>( $i_F = 10 \text{ Amps}$ , $T_C = 150^{\circ}\text{C}$ )<br>( $i_F = 20 \text{ Amps}$ , $T_C = 25^{\circ}\text{C}$ )<br>( $i_F = 20 \text{ Amps}$ , $T_C = 150^{\circ}\text{C}$ ) | VF             | 0.52<br>0.40<br>0.58<br>0.48 | V    |
| Maximum Instantaneous Reverse Current (Note 1) (Rated DC Voltage, $T_C = 25^{\circ}C$ ) (Rated DC Voltage, $T_C = 100^{\circ}C$ ) (Rated DC Voltage, $T_C = 125^{\circ}C$ )                                                                                                                      | i <sub>R</sub> | 5.0<br>40<br>75              | mA   |

<sup>1.</sup> Pulse Test: Pulse Width = 5.0 ms, Duty Cycle  $\leq 10\%$ .

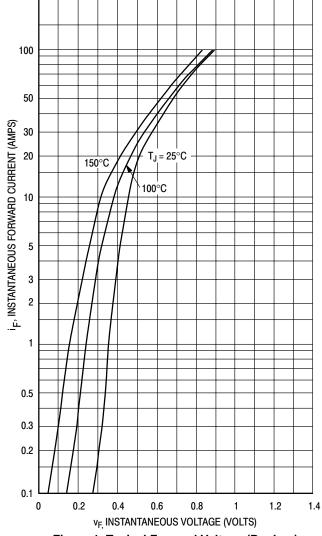



Figure 1. Typical Forward Voltage (Per Leg)

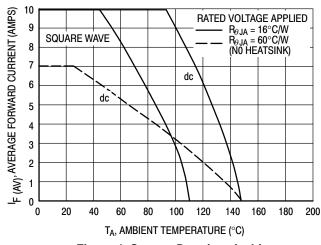



Figure 4. Current Derating, Ambient

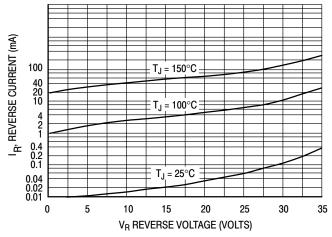



Figure 2. Typical Reverse Current (Per Leg)

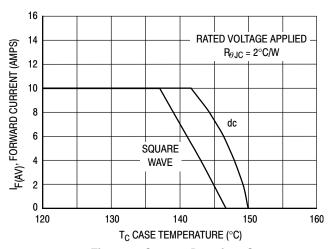



Figure 3. Current Derating, Case

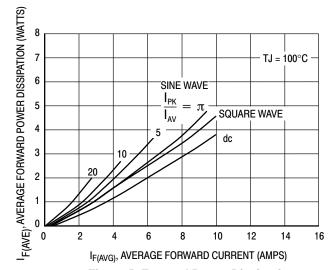



Figure 5. Forward Power Dissipation

#### HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 6.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

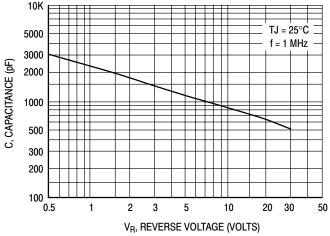



Figure 6. Typical Capacitance

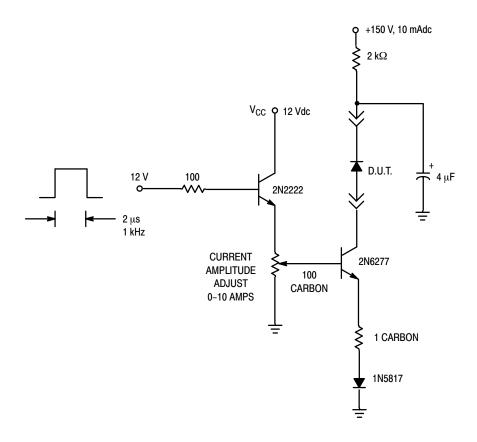
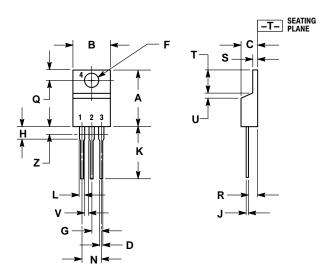




Figure 7. Test Circuit for dv/dt and Reverse Surge Current

#### **PACKAGE DIMENSIONS**

TO-220AB CASE 221A-09 ISSUE AA



- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: INCH.
  3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

|     | INCHES |       | MILLIMETERS |       |
|-----|--------|-------|-------------|-------|
| DIM | MIN    | MAX   | MIN         | MAX   |
| Α   | 0.570  | 0.620 | 14.48       | 15.75 |
| В   | 0.380  | 0.405 | 9.66        | 10.28 |
| С   | 0.160  | 0.190 | 4.07        | 4.82  |
| D   | 0.025  | 0.035 | 0.64        | 0.88  |
| F   | 0.142  | 0.147 | 3.61        | 3.73  |
| G   | 0.095  | 0.105 | 2.42        | 2.66  |
| Н   | 0.110  | 0.155 | 2.80        | 3.93  |
| J   | 0.018  | 0.025 | 0.46        | 0.64  |
| K   | 0.500  | 0.562 | 12.70       | 14.27 |
| L   | 0.045  | 0.060 | 1.15        | 1.52  |
| N   | 0.190  | 0.210 | 4.83        | 5.33  |
| Q   | 0.100  | 0.120 | 2.54        | 3.04  |
| R   | 0.080  | 0.110 | 2.04        | 2.79  |
| S   | 0.045  | 0.055 | 1.15        | 1.39  |
| Т   | 0.235  | 0.255 | 5.97        | 6.47  |
| U   | 0.000  | 0.050 | 0.00        | 1.27  |
| ٧   | 0.045  |       | 1.15        |       |
| Z   |        | 0.080 |             | 2.04  |

 $SWITCHMODE\ is\ a\ trademark\ of\ Semiconductor\ Components\ Industries,\ LLC.$ 

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.