

8-Channel Fault-Protected Analog Multiplexer

358 8-CHANNEL SINGLE-ENDED MULTIPLEXER Logic Diagram

FEATURES:

- Rad-Pak® technology-hardened against natural space radiation
- Total dose hardness:
 - > 50 krad (Si), depending upon space mission
- Excellent Single Event Effect
- SEL_{TH} > 80 MeV/mg/cm²
- SEU_{TH} > 80 MeV/mg/cm²
- · Package:
 - 16 pin Rad-Pak® Flat Pack
- · All switches off with power supplies off
- On channel turns OFF if overvoltage occurs
- Only nanoamperes of input current under all fault conditions
- Operates from ±4.5 to ±18V supplies
- All digital inputs are TTL and CMOS compatible
- Significantly reduced power consumption

DESCRIPTION:

Maxwells's 358 8-Channel single-ended (1 of 8) multiplexers with fault protection features a greater than 50 krad (Si) total dose tolerance, depending upon space mission. Using a series N-channel, P-channel, N-channel structure, these multiplexers provide significantly improved fault protection. If the power supplies to the fault-protected multiplexer are inadvertently turned off while input voltages are still applied, all channels in the multiplexer are turned off, and only a few nanoamperes of leakage current will flow into the inputs. This protects not only the multiplexer and the circuitry driven by the multiplexer, but also protects the sensors or signal sources which drive the multiplexer. All digital inputs have logic thresholds of 0.8V and 2.4V, ensuring both TTL and CMOS compatibility without requiring pullup resistors. Break-before-make operation is guaranteed. Power supply currents have been reduced and typical power dissipation is less than 2 mW.

Maxwell Technologies' patented Rad-Pak® packaging technology incorporates radiation shielding in the microcircuit package. It eliminates the need for box shielding while providing the required radiation shielding for a lifetime in orbit or a space mission. In a GEO orbit, Rad-Pak® provides true greater than 50 krad (Si) total radiation dose tolerance, dependent upon space mission. This product is available with packaging and screening up to Class S.

All data sheets are subject to change without notice

TABLE 1. PINOUT DESCRIPTION

Pin	Symbol	Description
1, 16, 15	A0-A2	Address Inputs
2	Enable	Enable Inputs
3	-V Supply	Negative Supply Voltage
4-7, 12-9	IN1-IN8	Analog Inputs-bidirectional
8	OUT	Output-bidirectional
13	+V Supply	Positive Supply Voltage
14	GND	Ground

Table 2. 358 Absolute Maximum Ratings

Parameter	SYMBOL	Max	Units
Voltage between Supply Pins V+ V-		+44 +22 -22	V
Digital Input Overvoltage VEN, VA Vsupply (+) Vsupply (-)		+4 -4	V
Analog Input Overvoltage with Multiplexer Power On: VS Vsupply (+) Vsupply (-)		+20 -20	V
Analog Input Overvoltage with Multiplexer Power Off: VS Vsupply (+) Vsupply (-)		+35 -35	V
Continuous Current Peak Current (Pulse at 1 ms, 10% duty cycle max)		20 40	mA
Thermal Impedance	$\Theta_{ extsf{JC}}$	2.69	°C/W
Weight	**	2.25	Grams
Operating Temperature Range:	T _A	-55 to +125	°C
Storage Temperature Range:	T _S	-65 to +150	°C

Table 3. 358 Electrical Characteristics

(V+ = 15V, V- = -15V, V_{AH} = 2.4V, V_{AL} = 0.8V, T_{A} = -55 to +125°C, unless otherwise specified)

Parameter	Test Conditions	SUBGROUPS	Symbol	Темр	Min	Түр	Max	Units
STATIC								
ON Resistance	$V_D = \pm 10V$, $I_S = \pm 100 \mu A$ $V_{AL} = 0.8V$, $V_{AH} = 2.4V$	1, 2, 3	r _{DS(ON)}	+25°C Full		1.2 1.5	1.5 1.8	kΩ
OFF Input Leakage Current	$V_S = \pm 10V, V_D = +10V$ $V_{EN} = 0.8V$	1, 2, 3	I _{S(OFF)}	+25°C Full		0.03	50	nA
OFF Output Leakage Current	$V_D = \pm 10V, V_S = +10V$ $V_{EN} = 0.8V$	1, 2, 3	I _{D(OFF)}	+25°C Full		0.1	200	nA
ON Channel Leakage Current	$V_{S(ALL)} = V_D = \pm 10V^1$ $V_{AH} = V_{EN} = 2.4V$ $V_{AL} = 0.8V$	1, 2, 3	I _{D(ON)}	+25°C Full		0.1	2002	nA
Analog Signal Range	2	1, 2, 3	V _{AN}	Full	-15		15	V
FAULT								
Output Leakage Current (with Overvoltage)	V _D = 0V ¹ Analog Overvoltage = ±33V	1, 2, 3	I _{D(OFF)}	+25°C Full		4.0	2.0	nA μA
Input Leakage Current (with Overvoltage)	$V_{IN} = \pm 25V$, $V_{O} = \pm 10V^{1}$	1, 2, 3	I _{S(OFF)}	+25°C			5.0	μA
Input Leakage Current (w/ Power Supplies Off)	$V_{IN} = \pm 25V$, $V_{EN} = V_{O} = 0V$ $A_{O} = A_{1} = A_{2} = OV \text{ or } 5V$	1, 2, 3	I _{S(OFF)}	+25°C			2.0	μA
INPUT						I	l .	I
Input Low Threshold		1, 2, 3	V_{AL}	Full			0.8	V
Input High Threshold		1, 2, 3	V_{AH}	Full	2.4			V
Input Leakage Current (High or Low)	V _A = 4V or 0V ³	1, 2, 3	I _A	Full			1.0	μA
DYNAMIC							•	•
Access Time		1, 2, 3	t _A	+25°C		0.5	1.0	μs
Break-Before-Make Delay	$V_{EN} = \pm 5V, V_{IN} = \pm 10V$ A_{O}, A_{1}, A_{2} Strobed	9, 10, 11	t _{on-} t _{off}	+25°C	25	80		ns
Enable Delay (ON)		9, 10, 11	t _{on(EN)}	+25°C Full		300	500 1000	ns
Enable Delay (OFF)		9, 10, 11	t _{off(EN)}	+25°C Full		300	500 1000	ns
Setting Time: (0.1%) (0.01%)		9, 10, 11	t _{sett}	+25°C		1.2 3.5		μs
"OFF Isolation" ⁴	V_{EN} = 0.8V, R_L = 1k Ω C_L = 15pF, V = 7V _{RMS} f = 100kHz	4, 5, 6		+25°C	50	68		db

TABLE 3. 358 ELECTRICAL CHARACTERISTICS

 $(V^{+} = 15V, V^{-} = -15V, V_{AH} = 2.4V, V_{AL} = 0.8V, T_{A} = -55 \text{ to } +125^{\circ}C, \text{ unless otherwise specified})$

Parameter	Test Conditions	Subgroups	Symbol	Темр	Min	Түр	Max	Units
Channel Input Capacitance ⁴		4, 5, 6	C _{S(OFF)}	+25°C		5		pF
Channel Output Capacitance ⁴		4, 5, 6	C _{D(OFF)}	+25°C		25		pF
Digital Input Capacitance ⁴		4, 5, 6	C _A	+25°C		5		pF
Digital Output Capacitance ⁴		4, 5, 6	C _{DS(OFF)}	+25°C		0.1		pF
SUPPLY								
Positive Supply Current	V _{EN} = 0.8V or 2.4V V _A = 0V or 5V	1, 2, 3	l+	+25°C Full		0.1 0.3	0.6 0.7	mA
Negative Supply Current	V _{EN} = 0.8V or 2.4V V _A = 0V or 5V	1, 2, 3	l-	+25°C Full		0.01 0.02	0.1 0.2	mA
Power Supply Range for Continuous Operation	5	1, 2, 3	V _{OP}	+25°C	±4.5		±18	V

- 1. The value shown is the steady state value. The transient leakage is typically 10 μ A.
- 2. When the analog signal exceeds +13.5V or -12V the blocking action of the gate structure goes into operation. Only leakage currents flow and the channel on resistance rises to infinity.
- 3. Digital input leakage is primarily due to the clamp diodes. Typical leakage is less than 1 nA @ +25°C.
- 4. Guaranteed by design.
- 5. Electrical characteristics, such as ON Resistance, will change when power supplies other than ±15V are used.

Figure 1. Input Leakage vs. Input Voltage with V+=V-=0V

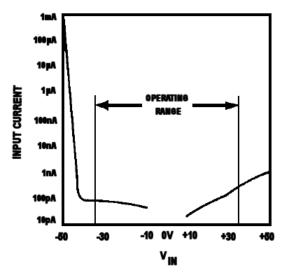
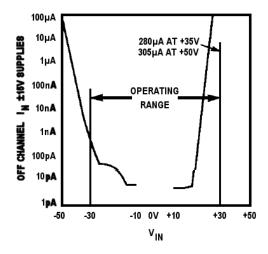
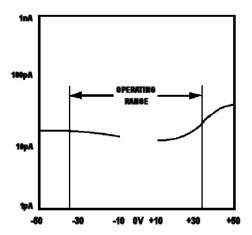
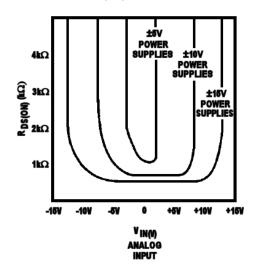


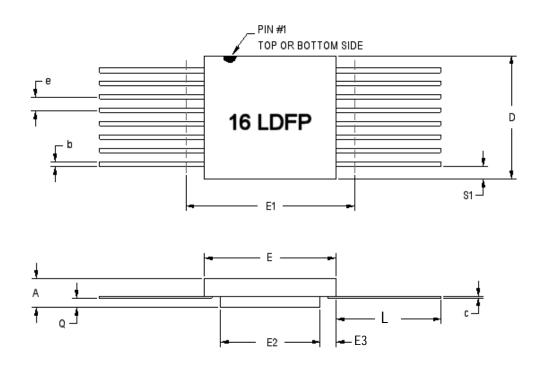
FIGURE 2. OFF CHANNEL LEAKAGE CURRENT VS. INPUT VOLTAGE WITH ±15V SUPPLIES


FIGURE 3. OUTPUT LEAKAGE VS. OFF CHANNEL OVERVOLTAGE WITH ±15V SUPPLIES

02.06.04 Rev 3

All data sheets are subject to change without notice


Figure 4. $R_{DS(ON)}$ vs. Input Voltage

TRUTH TABLE

A2	A1	A0	EN	ON SWITCH
X	Х	Х	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

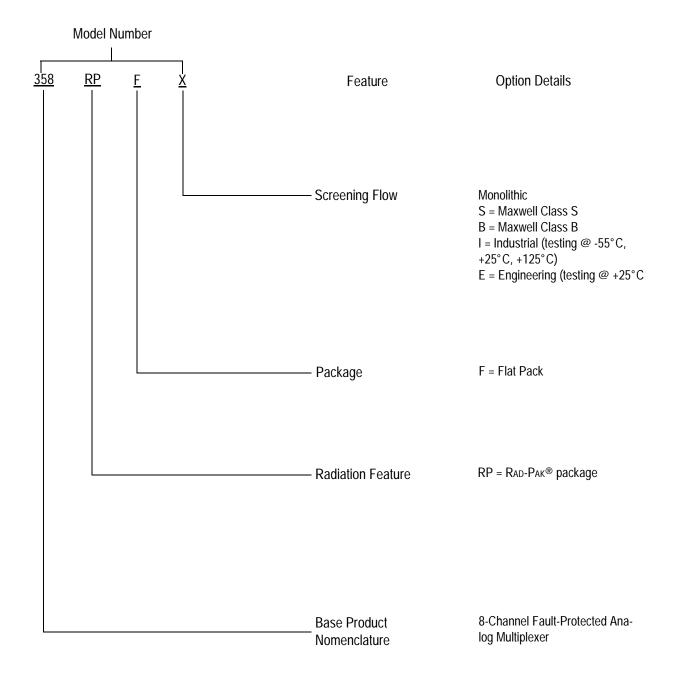
Logic "0" = VAL \leq 0.8V, Logic "1" = VAH \geq 2.4V

16-PIN RAD-PAK® FLAT PACK PACKAGE

Symbol	DIMENSIONS					
	Min	Nом	Max			
Α	.115	.135	.150			
b	.015	.017	.019			
С	.004	.005	.007			
D	0.407	.415	.423			
E	.275	.280	.285			
E1			0.500			
E2	.150	.156	0.162			
E3	.030	.062				
е	.050 BSC					
L	.325	.335	.345			
Q	.020	.033	.045			
S1	.005	.024	0.045			
N	16					

All dimensions in inches

Important Notice:


These data sheets are created using the chip manufacturer's published specifications. Maxwell Technologies verifies functionality by testing key parameters either by 100% testing, sample testing or characterization.

The specifications presented within these data sheets represent the latest and most accurate information available to date. However, these specifications are subject to change without notice and Maxwell Technologies assumes no responsibility for the use of this information.

Maxwell Technologies' products are not authorized for use as critical components in life support devices or systems without express written approval from Maxwell Technologies.

Any claim against Maxwell Technologies must be made within 90 days from the date of shipment from Maxwell Technologies. Maxwell Technologies' liability shall be limited to replacement of defective parts.

Product Ordering Options

