
SEMiX 604GB126HD

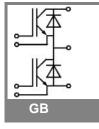
SEMiX[®] 4

Trench IGBT Modules

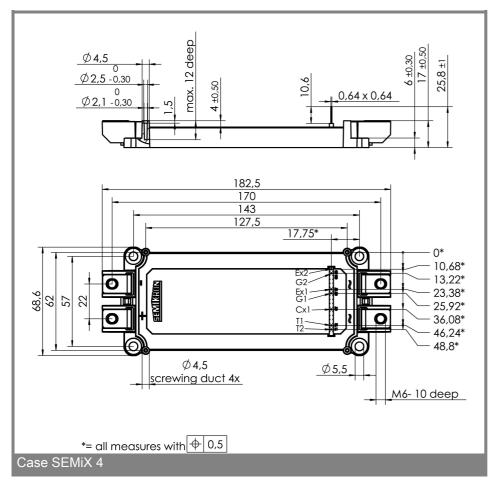
SEMiX 604GB126HD

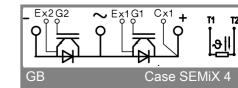
Target Da	ata
-----------	-----

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability

Typical Applications


- AC inverter drives
- UPS
- Electronic welders


Absolute	aximum Ratings T _c = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units				
IGBT							
V _{CES}		1200	V				
I _C	T _c = 25 (80) °C	620 (440)	А				
ICRM	$t_p = 1 \text{ ms}$	800	А				
V _{GES}		± 20	V				
T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C				
V _{isol}	AC, 1 min.	4000	V				
Inverse diode							
I _F	T _c = 25 (80) °C	500 (340)	А				
I _{FRM}	t _p = 1 ms	800	А				
I _{FSM}	t _p = 10 ms; sin.; T _j = 25 °C	2500	А				

Characte	ristics	$T_c = 25 \text{ °C}$, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT								
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 16 \text{ mA}$	5	5,8	6,5	V			
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) ^{\circ}C$			3	mA			
V _{CE(TO)}	$T_j = 25 (125) °C$		1 (0,9)	,	V			
r _{CE}	$V_{GE} = 15 \text{ V}, \text{ T}_{j} = 25 (125) \text{ °C}$		1,75 (2,75)		mΩ			
V _{CE(sat)}	$I_{Cnom} = 400 \text{ A}, V_{GE} = 15 \text{ V},$		1,7 (2)	2,15 (2,45)	V			
	T _j = 25 (125) °C, chip level							
C _{ies}	under following conditions		28,8		nF			
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		1,5		nF			
C _{res}			1,3 22		nF			
L _{CE}	(a sector) at the T = 05 (405) %0		22		nH			
R _{CC'+EE'}	terminal-chip, T _c = 25 (125) °C				mΩ			
t _{d(on)} /t _r	$V_{CC} = 600 \text{ V}, \text{ I}_{Cnom} = 400 \text{ A}$				ns			
t _{d(off)} /t _f	$V_{GE} = = \pm 15 V$		00 (04)		ns			
E _{on} (E _{off})	$R_{Gon} = R_{Goff} = \Omega, T_j = 125 \text{ °C}$		36 (64)		mJ			
Inverse d								
$V_{F} = V_{EC}$	I _{Fnom} = 400 A; V _{GE} = 0 V; T _j = 25 (125) °C, chip level		1,6 (1,6)	1,8 (1,8)	V			
V _(TO)	T _j = 25 (125) °C		1 (0,8)	1,1 (0,9)	V			
r _T	T _j = 25 (125) °C		1,5 (2)	1,8 (2,3)	mΩ			
I _{RRM}	$I_{\text{Fnom}} = 400 \text{ A}; T_{\text{j}} = 25 (125) \text{ °C}$				A			
Q _{rr}	di/dt = A/µs				μC			
Err	V _{GE} = -15 V				mJ			
	characteristics							
R _{th(j-c)}	per IGBT			0,06	K/W			
R _{th(j-c)D}	per Inverse Diode			0,13	K/W			
R _{th(j-c)FD}	per FWD				K/W			
R _{th(c-s)}	per module		0,03		K/W			
	ture sensor							
R ₂₅	$T_c = 25 \ ^{\circ}C$		5 ±5%		kΩ			
B _{25/85}	R ₂ =R ₁ exp[B(1/T ₂ -1/T ₁)] ; T[K];B		3420		К			
Mechanical data								
M _s /M _t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm			
w			390		g			

SEMiX 604GB126HD

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.