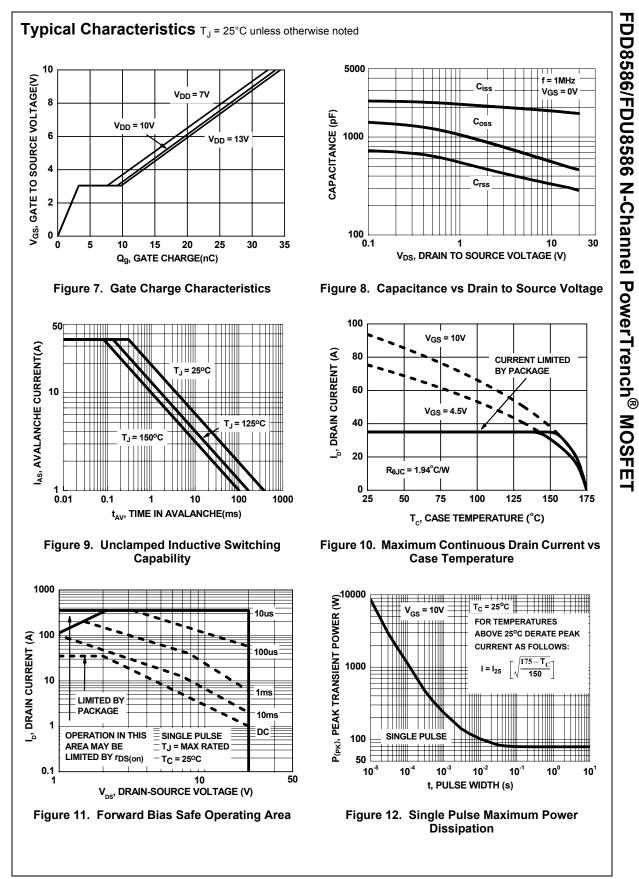



FDD8586/FDU8586 N-Channel PowerTrench<sup>®</sup> MOSFET

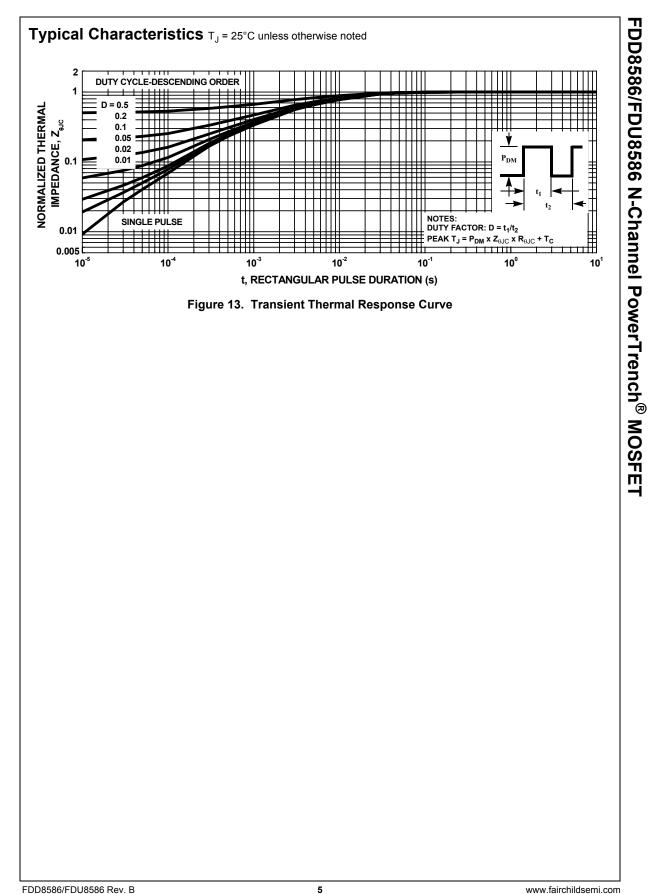
| Symbol                            | Parameter                                                     |          | Ratings    | Units |
|-----------------------------------|---------------------------------------------------------------|----------|------------|-------|
| V <sub>DS</sub>                   | Drain to Source Voltage                                       |          | 20         | V     |
| V <sub>GS</sub>                   | Gate to Source Voltage                                        |          | ±20        | V     |
|                                   | Drain Current -Continuous (Package Limited)                   |          | 35         |       |
| I <sub>D</sub>                    | -Continuous (Die Limited)                                     |          | 93         | А     |
|                                   | -Pulsed                                                       | (Note 1) | 354        |       |
| E <sub>AS</sub>                   | Single Pulse Avalanche Energy                                 | (Note 2) | 144        | mJ    |
| P <sub>D</sub>                    | Power Dissipation                                             |          | 77         | W     |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature                             |          | -55 to 175 | °C    |
| Therma                            | I Characteristics                                             |          |            |       |
| R <sub>0JC</sub>                  | HJC Thermal Resistance, Junction to Case TO-252, TO-251       |          | 1.94       | °C/W  |
| D                                 | The second Designment of the state Analytics of TO 050 TO 054 |          | 100        | 0000  |

Thermal Resistance, Junction to Ambient TO-252, TO-251 100 °C/W  $R_{\theta JA}$ Thermal Resistance, Junction to Ambient TO-252,1in<sup>2</sup> copper pad area 52 °C/W  $R_{\theta JA}$ 

# Package Marking and Ordering Information


| Device Marking | Device  | Package  | Reel Size | Tape Width | Quantity   |
|----------------|---------|----------|-----------|------------|------------|
| FDD8586        | FDD8586 | TO-252AA | 13"       | 12mm       | 2500 units |
| FDU8586        | FDU8586 | TO-251AA | N/A(Tube) | N/A        | 75 units   |

| Drain to Source Breakdown Voltage         Breakdown Voltage Temperature         Coefficient         Zero Gate Voltage Drain Current         Gate to Source Leakage Current                                                          | $I_{D} = 250\mu A, V_{GS} = I_{D} = 250\mu A, refere25°CV_{DS} = 16V,V_{GS} = 0VV_{GS} = ±20V$                                   |                                                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                    | 14.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Breakdown Voltage Temperature         Coefficient         Zero Gate Voltage Drain Current         Gate to Source Leakage Current                                                                                                    | $I_D = 250\mu$ A, refere<br>25°C<br>$V_{DS} = 16V$ ,<br>$V_{GS} = 0V$                                                            |                                                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                    | 14.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Breakdown Voltage Temperature         Coefficient         Zero Gate Voltage Drain Current         Gate to Source Leakage Current                                                                                                    | $I_D = 250\mu$ A, refere<br>25°C<br>$V_{DS} = 16V$ ,<br>$V_{GS} = 0V$                                                            |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       | 14.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Coefficient<br>Zero Gate Voltage Drain Current<br>Gate to Source Leakage Current                                                                                                                                                    | 25°C<br>V <sub>DS</sub> = 16V,<br>V <sub>GS</sub> = 0V                                                                           |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       | 14.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Gate to Source Leakage Current                                                                                                                                                                                                      | V <sub>GS</sub> = 0V                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            | mV/°C                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Gate to Source Leakage Current                                                                                                                                                                                                      |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                          | μA                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                     | $V_{GS} = \pm 20V$                                                                                                               | 5                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 250                                                                                                        | _ μΑ                                                                                                                                                                                                                                                                                                                                                                                                                  |
| cteristics                                                                                                                                                                                                                          | 6                                                                                                                                |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ±100                                                                                                       | nA                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Gate to Source Threshold Voltage                                                                                                                                                                                                    | $V_{GS} = V_{DS}, I_D =$                                                                                                         | 2504                                                                                                                                                                                                                                                                                                              | 1.2                                                                                                                                                                                                                                                                   | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                        | V                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Gate to Source Threshold Voltage                                                                                                                                                                                                    | $I_D = 250 \mu A$ , refer                                                                                                        |                                                                                                                                                                                                                                                                                                                   | 1.2                                                                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                        | v                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ũ                                                                                                                                                                                                                                   | 25°C                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       | -6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                            | mV/°C                                                                                                                                                                                                                                                                                                                                                                                                                 |
| - P                                                                                                                                                                                                                                 | V <sub>GS</sub> = 10V, I <sub>D</sub> = 35A                                                                                      |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.5                                                                                                        | mΩ                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Drain to Source Or Desistance                                                                                                                                                                                                       |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.5                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Drain to Source On Resistance                                                                                                                                                                                                       | $V_{GS} = 10V, I_D = 35A$<br>$T_J = 175^{\circ}C$                                                                                |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.9                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Forward Transcondductance                                                                                                                                                                                                           | -                                                                                                                                |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            | S                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Input Capacitance<br>Output Capacitance<br>Reverse Transfer Capacitance                                                                                                                                                             | - V <sub>DS</sub> = 10V, V <sub>GS</sub> =<br>f = 1MHz                                                                           | = 0V,                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                       | 1865<br>550<br>335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2480<br>730<br>445                                                                                         | pF<br>pF<br>pF                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                     | f = 104117                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 445                                                                                                        | Ω                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Characteristics</b> Turn-On Delay Time                                                                                                                                                                                           | T                                                                                                                                |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ,                                                                                                                                                                                                                                   | V <sub>DD</sub> = 10V, I <sub>D</sub> = 3                                                                                        | 35A                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18                                                                                                         | ns                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Rise Time                                                                                                                                                                                                                           | V <sub>DD</sub> = 10V, I <sub>D</sub> = 3<br>V <sub>GS</sub> = 10V, R <sub>GS</sub>                                              |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                         | ns                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Rise Time<br>Turn-Off Delay Time                                                                                                                                                                                                    |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       | 11<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20<br>75                                                                                                   | ns<br>ns                                                                                                                                                                                                                                                                                                                                                                                                              |
| Rise Time<br>Turn-Off Delay Time<br>Fall Time                                                                                                                                                                                       | - V <sub>GS</sub> = 10V, R <sub>GS</sub>                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       | 11<br>47<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>75<br>40                                                                                             | ns<br>ns<br>ns                                                                                                                                                                                                                                                                                                                                                                                                        |
| Rise Time         Turn-Off Delay Time         Fall Time         Total Gate Charge at 10V                                                                                                                                            | $V_{GS}$ = 10V, $R_{GS}$<br>V <sub>GS</sub> = 0V to 10V                                                                          | = 10Ω<br>V <sub>DD</sub> = 10V                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                       | 11<br>47<br>25<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20<br>75<br>40<br>48                                                                                       | ns<br>ns<br>ns<br>nC                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rise Time         Turn-Off Delay Time         Fall Time         Total Gate Charge at 10V         Total Gate Charge at 5V                                                                                                            | - V <sub>GS</sub> = 10V, R <sub>GS</sub>                                                                                         | = 10Ω<br>V <sub>DD</sub> = 10V<br>I <sub>D</sub> = 35A                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                       | 11<br>47<br>25<br>34<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20<br>75<br>40                                                                                             | ns<br>ns<br>ns<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                            |
| Rise Time         Turn-Off Delay Time         Fall Time         Total Gate Charge at 10V         Total Gate Charge at 5V         Gate to Source Gate Charge                                                                         | $V_{GS}$ = 10V, $R_{GS}$<br>V <sub>GS</sub> = 0V to 10V                                                                          | = 10Ω<br>V <sub>DD</sub> = 10V                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                       | 11<br>47<br>25<br>34<br>16<br>3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20<br>75<br>40<br>48                                                                                       | ns<br>ns<br>nC<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                            |
| Rise Time         Turn-Off Delay Time         Fall Time         Total Gate Charge at 10V         Total Gate Charge at 5V         Gate to Source Gate Charge         Gate to Drain "Miller"Charge                                    | $V_{GS}$ = 10V, $R_{GS}$<br>V <sub>GS</sub> = 0V to 10V                                                                          | = 10Ω<br>V <sub>DD</sub> = 10V<br>I <sub>D</sub> = 35A                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                       | 11<br>47<br>25<br>34<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20<br>75<br>40<br>48                                                                                       | ns<br>ns<br>nS<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                            |
| Rise Time         Turn-Off Delay Time         Fall Time         Total Gate Charge at 10V         Total Gate Charge at 5V         Gate to Source Gate Charge         Gate to Drain "Miller"Charge         urce Diode Characteristics | $V_{GS}$ = 10V, R <sub>GS</sub><br>$V_{GS}$ = 0V to 10V<br>$V_{GS}$ = 0V to 5V                                                   | = 10Ω<br>$V_{DD} = 10V$<br>$I_D = 35A$<br>$I_g = 1.0mA$                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                       | 11<br>47<br>25<br>34<br>16<br>3.2<br>5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20<br>75<br>40<br>48<br>22                                                                                 | ns<br>ns<br>nC<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                            |
| Rise Time         Turn-Off Delay Time         Fall Time         Total Gate Charge at 10V         Total Gate Charge at 5V         Gate to Source Gate Charge         Gate to Drain "Miller"Charge                                    | $V_{GS} = 10V, R_{GS}$<br>$V_{GS} = 0V \text{ to } 10V$<br>$V_{GS} = 0V \text{ to } 5V$<br>$V_{GS} = 0V, I_S = 35$               | $= 10\Omega$ $V_{DD} = 10V$ $I_{D} = 35A$ $I_{g} = 1.0mA$ $5A$                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                       | 11<br>47<br>25<br>34<br>16<br>3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20<br>75<br>40<br>48<br>22<br>                                                                             | ns<br>ns<br>nC<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                            |
| Rise Time         Turn-Off Delay Time         Fall Time         Total Gate Charge at 10V         Total Gate Charge at 5V         Gate to Source Gate Charge         Gate to Drain "Miller"Charge         urce Diode Characteristics | $V_{GS}$ = 10V, R <sub>GS</sub><br>$V_{GS}$ = 0V to 10V<br>$V_{GS}$ = 0V to 5V                                                   | $V_{DD} = 10V$ $V_{DD} = 35A$ $I_{g} = 1.0mA$ $SA$                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                       | 11<br>47<br>25<br>34<br>16<br>3.2<br>5.9<br>0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20<br>75<br>40<br>48<br>22                                                                                 | ns<br>ns<br>nC<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                     | Characteristics<br>Input Capacitance<br>Output Capacitance<br>Reverse Transfer Capacitance<br>Gate Resistance<br>Characteristics | $\label{eq:constraint} \begin{array}{c} V_{GS} = 10V, \ I_D = 3\\ V_{GS} = 4.5V, \ I_D = 3\\ V_{GS} = 10V, \ I_D = 3\\ V_{GS} = 10V, \ I_D = 3\\ T_J = 175^\circ C\\ \end{array}$ Forward Transcondductance $V_{DS} = 10V, \ I_D = 3\\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | $\begin{tabular}{ c c c c c } \hline V_{GS} &= 10V, \ I_D &= 35A \\ \hline V_{GS} &= 4.5V, \ I_D &= 33A \\ \hline V_{GS} &= 10V, \ I_D &= 35A \\ \hline T_J &= 175^\circ C \\ \hline Forward Transcondductance & V_{DS} &= 10V, \ I_D &= 35A \\ \hline \end{tabular}$ | $\begin{tabular}{ c c c c c } \hline V_{GS} &= 10V, I_D &= 35A & & & \\ \hline V_{GS} &= 4.5V, I_D &= 33A & & \\ \hline V_{GS} &= 10V, I_D &= 35A & & \\ \hline V_{GS} &= 10V, I_D &= 35A & & \\ \hline T_J &= 175^\circ C & & & \\ \hline Forward Transcondductance & & V_{DS} &= 10V, I_D &= 35A & & \\ \hline \hline \hline \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline$ | $\begin{tabular}{ c c c c c } \hline Temperature Coefficient & 25°C & & & & & & & & & & & & & & & & & & &$ | $\begin{tabular}{ c c c c c c c } \hline Temperature Coefficient & 25°C & & & & 4.0 & 5.5 \\ \hline Temperature Coefficient & & V_{GS} = 10V, I_D = 35A & & 4.0 & 5.5 \\ \hline V_{GS} = 4.5V, I_D = 33A & & 5.7 & 8.5 \\ \hline V_{GS} = 10V, I_D = 35A & & 5.7 & 8.5 \\ \hline V_{GS} = 10V, I_D = 35A & & 6.5 & 8.9 \\ \hline Forward Transcondductance & V_{DS} = 10V, I_D = 35A & & 175 \\ \hline \end{tabular}$ |




FDD8586/FDU8586 Rev. B

www.fairchildsemi.com



FDD8586/FDU8586 Rev. B



## TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

АСЕхтм ActiveArray<sup>™</sup> Bottomless<sup>™</sup> Build it Now™ **CoolFET™** CROSSVOLT™ DOME<sup>TM</sup> EcoSPARK<sup>TM</sup> E<sup>2</sup>CMOS™ EnSigna™ FACT®  $\mathsf{FAST}^{\mathbb{R}}$ FASTr<sup>™</sup> FPSTM **FRFETTM** 

FACT Ouiet Series<sup>™</sup> GlobalOptoisolator<sup>™</sup> **GTOTM** HiSeCTM  $I^2C^{TM}$ i-Lo™ ImpliedDisconnect<sup>™</sup> IntelliMAX<sup>TM</sup> **ISOPLANAR<sup>TM</sup>** LittleFET™ MICROCOUPLER™ MicroFET™ MicroPak<sup>тм</sup> MICROWIRE<sup>TM</sup> MSX™ MSXPro™ Across the board. Around the world.™

OCX<sup>™</sup> OCXPro™ **OPTOLOGIC**<sup>®</sup> **OPTOPLANAR™** PACMANTM РОРТМ Power247<sup>TM</sup> PowerEdge<sup>™</sup> PowerSaver<sup>TM</sup> PowerTrench® **OFET**<sup>®</sup> OSTM QT Optoelectronics<sup>™</sup> Quiet Series™ RapidConfigure™ RapidConnect<sup>™</sup> µSerDes™ ScalarPump™

SILENT SWITCHER® SMART START™ **SPM**<sup>TM</sup> Stealth<sup>™</sup> SuperFET™ SuperSOT<sup>™</sup>-3 SuperSOT<sup>™</sup>-6 SuperSOT<sup>™</sup>-8 SyncFET<sup>TM</sup> ТСМ™ TinyBoost<sup>™</sup> TinyBuck™ **TinyPWM™** TinyPower<sup>™</sup> TinyLogic® **ΤΙΝΥΟΡΤΟ**<sup>TM</sup> TruTranslation™  $\mathrm{UHC}^{\mathbb{R}}$ 

FDD8586/FDU8586 N-Channel PowerTrench<sup>®</sup> MOSFE<sup>-</sup>

**UniFET™** 

**VCXTM** 

Wire<sup>™</sup>

DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

### LIFE SUPPORT POLICY

The Power Franchise® Programmable Active Droop<sup>TM</sup>

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

#### As used herein:

DISCLAIMER

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### PRODUCT STATUS DEFINITIONS Definition of Terms

| <b>Datasheet Identification</b> | Product Status            | Definition                                                                                                                                                                                                                        |
|---------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information             | Formative or In<br>Design | This datasheet contains the design specifications for<br>product development. Specifications may change in<br>any manner without notice.                                                                                          |
| Preliminary                     | First Production          | This datasheet contains preliminary data, and<br>supplementary data will be published at a later date.<br>Fairchild Semiconductor reserves the right to make<br>changes at any time without notice in order to improve<br>design. |
| No Identification Needed        | Full Production           | This datasheet contains final specifications. Fairchild<br>Semiconductor reserves the right to make changes at<br>any time without notice in order to improve design.                                                             |
| Obsolete                        | Not In Production         | This datasheet contains specifications on a product<br>that has been discontinued by Fairchild semiconductor.<br>The datasheet is printed for reference information only.                                                         |