MOTOROLA SEMICONDUCTOR TECHNICAL DATA ### PNP SILICON ANNULAR **AMPLIFIER TRANSISTORS** . . designed for general-purpose, high-voltage amplifier and driver applications. - High Collector-Emitter Breakdown Voltage --V(BR)CEO = 60 Vdc (Min) @ IC = 1.0 mAdc — MPS-U56 - High Power Dissipation − PD = 10 W @ TC = 25°C - Complements to NPN MPS-U05 and MPS-U06 PNP SILICON **AMPLIFIER TRANSISTORS** MAXIMUM RATINGS | Symbol | MPS-U55 | MPS-U56 | Unit | |----------------------------------|--------------------------------|----------------------------------|---| | VCEO | 60 | 80 | Vdc | | V _{CB} | 60 | 80 | Vdc | | VEB | 4.0 | | Vdc | | lc lc | 2.0 | | Adc | | PD | 1.0
8.0 | | Watt
mW/ ^Q C | | PD | | | Watts
mW/ ^O C | | T _J ,T _{Stg} | -55 to | +150 | °C | | | VCEO
VCB
VEB
IC
PD | VCEO 60 VCB 60 VEB 4 IC 2 PD 1 E | VCEO 60 80 VCB 60 80 VEB 4.0 IC 2.0 PD 1.0 8.0 PD 10 80 | THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|----------------------|------|------| | Thermal Resistance, Junction to Ambient | R _∂ JA(1) | 125 | °C/W | | Thermal Resistance, Junction to Case | ReJC | 12.5 | oc/w | (1) $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board. POSITION AT CASE, AT MAXIMUM MATERIAL CONDITION. | | MILLIM | MILLIMETERS | | INCHES | | | |-----|----------|-------------|-----------|--------|--|--| | DIM | MIN | MAX | MIN | MAX | | | | Α. | 9.14 | 9 53 | 0.360 | 0.375 | | | | 8_ | 8 60 | 7.24 | 0.260 | 0.285 | | | | C | 5.41 | 5.66 | 0.213 | 0.223 | | | | D | 0.38 | 0 53 | 0.015 | 0.021 | | | | F | 3.18 | 3 33 | 0.125 | 0.131 | | | | G | 2.54 8SC | | 0.100 BSC | | | | | H | 3.94 | 4.19 | 0.155 | 0.165 | | | | J | 0.36 | 0.41 | 0.014 | 0.016 | | | | K | 11.63 | 12.70_ | 0.458 | 0.500 | | | | Ł | 24.58 | 25.53 | 0.968 | 1005 | | | | N | 5.08 BSC | | 0 200 BSC | | | | | ā. | 2.39 | 2.69 | 0 094 | 0.106 | | | | R | 1.14 | 1.40 | 0 045 | 0 055 | | | **CASE 152-02** 3-1062 į # MPS-U55, MPS-U56 T-33-17 ## ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) | Characteristic | | Symbol | Min | Тур | Max | Unit | |--|--------------------|-----------------|--------------|------------------|-------------|------| | OFF CHARACTERISTICS | | | | | | | | Collector-Emitter Breakdown Voltage ⁽¹⁾
(I _C = 1.0 mAdc, I _B = 0) | MPS-U56
MPS-U56 | V(BR)CEO | 60
80 | - | 1-1 | Vdc | | Emitter-Base Breakdown Voltage
(IE = 100-μAdc, IC = 0) | | V(BR)EBO | 4.0 | _ | - | Vdc | | Collector Cutoff Current
(V _{CB} = 40 Vdc, I _E = 0)
(V _{CB} = 60 Vdc, I _E = 0) | MPS-U55
MPS-U56 | СВО | -
- | <u>-</u> | 100
100 | nAdc | | ON CHARACTERISTICS | | | | | | | | DC Current Gain (1) {IC = 50 mAdc, V _{GE} = 1.0 Vdc} {IC = 250 mAdc, V _{GE} = 1.0 Vdc} {IC = 500 mAdc, V _{CE} = 1.0 Vdc} | | phE | 80
50
 | 160
130
80 | -
-
- | - | | Collector-Emitter Saturation Voltage(1) (IC = 250 mAdc, IB = 10 mAdc) (IC = 250 mAdc, IB = 25 mAdc) | | VCE(sat) | | 0.22
0.15 | . 0.5
 | Vdc | | Base-Emitter On Voltage (1)
(I _C = 250 mAdc, V _{CE} = 5.0 Vdc) | | VBE(on) | - | 0.78 | 1.2 | Vdc | | SMALL-SIGNAL CHARACTERISTICS | | | | | | | | Current-Gain—Bandwidth Product (1)
(IC = 250 mAdc, VCE = 5.0 Vdc, f = 100 MHz) | | fT | 50 | 100 | | MHz | | Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 100 kHz) | | C _{ob} | - | 10 | 15 | pF | (1)Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%. #### FIGURE 3 - ACTIVE-REGION SAFE **OPERATING AREA** FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT There are two limitations on the power handling ability of a transistor: junction temperature and second breakdown. Safe operating area curves indicate $I_{\rm C}-V_{\rm CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 3 is based on $T_{J(pk)} = 150\,^{\circ}C$; T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. 3-1063