MOTOROLA SEMICONDUCTOR TECHNICAL DATA

PNP SILICON ANNULAR **AMPLIFIER TRANSISTORS**

. . designed for general-purpose, high-voltage amplifier and driver applications.

- High Collector-Emitter Breakdown Voltage --V(BR)CEO = 60 Vdc (Min) @ IC = 1.0 mAdc — MPS-U56
- High Power Dissipation − PD = 10 W @ TC = 25°C
- Complements to NPN MPS-U05 and MPS-U06

PNP SILICON **AMPLIFIER TRANSISTORS**

MAXIMUM RATINGS

Symbol	MPS-U55	MPS-U56	Unit
VCEO	60	80	Vdc
V _{CB}	60	80	Vdc
VEB	4.0		Vdc
lc lc	2.0		Adc
PD	1.0 8.0		Watt mW/ ^Q C
PD			Watts mW/ ^O C
T _J ,T _{Stg}	-55 to	+150	°C
	VCEO VCB VEB IC PD	VCEO 60 VCB 60 VEB 4 IC 2 PD 1 E	VCEO 60 80 VCB 60 80 VEB 4.0 IC 2.0 PD 1.0 8.0 PD 10 80

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	R _∂ JA(1)	125	°C/W
Thermal Resistance, Junction to Case	ReJC	12.5	oc/w

(1) $R_{ heta JA}$ is measured with the device soldered into a typical printed circuit board.

POSITION AT CASE, AT MAXIMUM MATERIAL CONDITION.

	MILLIM	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX		
Α.	9.14	9 53	0.360	0.375		
8_	8 60	7.24	0.260	0.285		
C	5.41	5.66	0.213	0.223		
D	0.38	0 53	0.015	0.021		
F	3.18	3 33	0.125	0.131		
G	2.54 8SC		0.100 BSC			
H	3.94	4.19	0.155	0.165		
J	0.36	0.41	0.014	0.016		
K	11.63	12.70_	0.458	0.500		
Ł	24.58	25.53	0.968	1005		
N	5.08 BSC		0 200 BSC			
ā.	2.39	2.69	0 094	0.106		
R	1.14	1.40	0 045	0 055		

CASE 152-02

3-1062

į

MPS-U55, MPS-U56

T-33-17

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage ⁽¹⁾ (I _C = 1.0 mAdc, I _B = 0)	MPS-U56 MPS-U56	V(BR)CEO	60 80	-	1-1	Vdc
Emitter-Base Breakdown Voltage (IE = 100-μAdc, IC = 0)		V(BR)EBO	4.0	_	-	Vdc
Collector Cutoff Current (V _{CB} = 40 Vdc, I _E = 0) (V _{CB} = 60 Vdc, I _E = 0)	MPS-U55 MPS-U56	СВО	- -	<u>-</u>	100 100	nAdc
ON CHARACTERISTICS						
DC Current Gain (1) {IC = 50 mAdc, V _{GE} = 1.0 Vdc} {IC = 250 mAdc, V _{GE} = 1.0 Vdc} {IC = 500 mAdc, V _{CE} = 1.0 Vdc}		phE	80 50 	160 130 80	- - -	-
Collector-Emitter Saturation Voltage(1) (IC = 250 mAdc, IB = 10 mAdc) (IC = 250 mAdc, IB = 25 mAdc)		VCE(sat)		0.22 0.15	. 0.5 	Vdc
Base-Emitter On Voltage (1) (I _C = 250 mAdc, V _{CE} = 5.0 Vdc)		VBE(on)	-	0.78	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain—Bandwidth Product (1) (IC = 250 mAdc, VCE = 5.0 Vdc, f = 100 MHz)		fT	50	100		MHz
Output Capacitance (VCB = 10 Vdc, IE = 0, f = 100 kHz)		C _{ob}	-	10	15	pF

(1)Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.

FIGURE 3 - ACTIVE-REGION SAFE **OPERATING AREA**

FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT

There are two limitations on the power handling ability of a transistor: junction temperature and second breakdown. Safe operating area curves indicate $I_{\rm C}-V_{\rm CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 3 is based on $T_{J(pk)} = 150\,^{\circ}C$; T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

3-1063