
USB
Microcontrollers

AT89C51SND1
USB Bootloader

4254C–MP3–03/06
Features
• Protocol

– USB Used as a Physical Layer
– Device Firmware Upgrade Class Compliant
– Auto-Frequency Detection

• In-System Programming
– Read/Write Flash Memory
– Read Device ID
– Full-chip Erase
– Read/Write Configuration Bytes
– Security Setting from ISP Command
– Remote Application Start Command

• In-Application Programming/Self-Programming
– Read/Write Flash Memory
– Read Device ID
– Block Erase
– Read/Write Configuration Bytes
– Bootloader Start

Description
This document describes the USB bootloader functionalities as well as the USB proto-
col to efficiently perform operations on the on-chip Flash memory. Additional
information on the AT89C51SND1 product can be found in the AT89C51SND1
datasheet and the AT89C51SND1 errata sheet available on the Atmel web site.
The bootloader software (binary file) currently used for production is available from the
Atmel web site.

Bootloader Revision Purpose of Modifications Date

Revisions 1.6.2 and higher First release 3/25/2003

Functional
Description

The AT89C51SND1 USB Bootloader facilitates In-System Programming (ISP) and In-Applica-
tion Programming.

In-System
Programming
Capability

In-System Programming allows the user to program or reprogram the microcontroller on-chip
Flash memory without removing it from the system and without the need of a pre-programmed
application.

The USB bootloader can manage a communication with a host through the USB bus. It can also
access and perform requested operations on the on-chip Flash memory.

In-Application
Programming or
Self- Programming
Capability

IAP allows the reprogramming of the microcontroller on-chip Flash memory without removing it
from the system and while the embedded application is running.

The USB bootloader contains some Application Programming Interface routines named API rou-
tines allowing IAP by using the user’s firmware.

Block Diagram This section describes the different parts of the USB bootloader. Figure 1 shows the on-chip
bootloader and IAP processes.

Figure 1. Bootloader Process Description

ISP Communication
Management

User
Application

USB Protocol
Communication

Management

Flash
Memory

External host via the

Flash Memory

IAP

Management
User Call

On-chip
2
4254C–MP3–03/06

AT89C51SND1

AT89C51SND1

ISP Communication
Management

The purpose of this process is to manage the communication and its protocol between the on-
chip bootloader and an external device (host). The on-chip bootloader implements a USB proto-
col (see Section “Protocol”, page 12). This process translates serial communication frames
(USB) into Flash memory accesses (read, write, erase...).

User Call Management Several Application Program Interface (API) calls are available to the application program to
selectively erase and program Flash pages. All calls are made through a common interface (API
calls) included in the bootloader. The purpose of this process is to translate the application
request into internal Flash memory operations.

Flash Memory
Management

This process manages low level accesses to the Flash memory (performs read and write
accesses).

Bootloader Configuration

Configuration and
Manufacturer
Information

The following table lists Configuration and Manufacturer byte information used by the boot-
loader. This information can be accessed through a set of API or ISP commands.

Mapping and Default
Value of Hardware
Security Byte

The 4 MSB of the Hardware Byte can be read/written by software (this area is called Fuse bits).
The 4 LSB can only be read by software and written by hardware using parallel programmer
devices, this area is called Lock bits.

Note: U: Unprogrammed = 1
P: Programmed = 0

Table 1. Configuration and Manufacturer Information

Mnemonic Description Default Value

BSB Boot Status Byte FFh

SBV Software Boot Vector FOh

SSB Software Security Byte FFh

EB Extra Byte FFh

Manufacturer 58h

Id1: Family Code D7h

Id2: Product Name F7h

Id3: Product Revision DFh

Table 2. Hardware Byte Information

Bit Position Mnemonic Default Value Description

7 X2B U To start in x1 mode

6 BLJB P To map the boot area in code area between F000h-FFFFh

5 – U

4 – U

3 reserved U

2 LB2 P

To lock the chip (see datasheet)1 LB1 U

0 LB0 U
3
4254C–MP3–03/06

Security The bootloader has Software Security Byte (SSB see Table 7) to protect itself from user access
or ISP access.

The Software Security Byte (SSB) protects from ISP accesses. The command ‘Program Soft-
ware Security Bit’ can only write a higher priority level. There are three levels of security:
• Level 0: NO_SECURITY (FFh)

This is the default level.
From level 0, one can write level 1 or level 2.

• Level 1: WRITE_SECURITY (FEh)
In this level it is impossible to write in the Flash memory.
The Bootloader returns an err_WRITE status.
From level 1, one can write only level 2.

• Level 2: RD_WR_SECURITY (FCh)
Level 2 forbids all read and write accesses to/from the Flash memory.
The Bootloader returns an err_WRITE or an err_VENDOR status.

Only a full chip erase command can reset the software security bits.
Table 3. Security Levels

Level 0 Level 1 Level 2

Flash Any access allowed Read only access allowed All access not allowed

Fuse bit Any access allowed Read only access allowed All access not allowed

BSB & SBV & EB Any access allowed Any access allowed Any access allowed

SSB Any access allowed Write level2 allowed Read only access allowed

Manufacturer info Read only access allowed Read only access allowed Read only access allowed

Bootloader info Read only access allowed Read only access allowed Read only access allowed

Erase block Allowed Not allowed Not allowed

Full chip erase Allowed Allowed Allowed

Blank Check Allowed Allowed Allowed
4
4254C–MP3–03/06

AT89C51SND1

AT89C51SND1
Software Boot
Vector

The Software Boot Vector (SBV see Table 6) forces the execution of a user bootloader starting
at address [SBV]00h in the application area (FM0).

The way to start this user bootloader is described in Section “Bootloader Configuration”.

FLIP Software
Program

FLIP is a PC software program running under Windows® 9x/Me/2000/XP and LINUX® that sup-
ports all Atmel Flash microcontrollers and USB protocol communication media.

This free software program is available from the Atmel web site.

USB Bootloader

Application
User Bootloader

[SBV]00h
FM1

FM0
5
4254C–MP3–03/06

In-System
Programming

The ISP allows the user to program or reprogram the microcontroller’s on-chip Flash memory
through the serial line without removing it from the system and without the need of a pre-pro-
grammed application.

This section describes how to start the USB bootloader and the higher level protocol.

Bootloader
Execution

As internal C51 code space is limited to 64K bytes, some mechanisms are implemented to allow
boot memory to be mapped in the code space for execution at addresses F000h to FFFFh. The
boot memory is enabled by setting the ENBOOT bit in AUXR1 (see Table 4). The three ways to
set this bit are detailed below.

Software Boot
Mapping

The software way to set ENBOOT consists in writing to AUXR1 from the user’s software. This
enables bootloader or API routines execution.

Hardware Condition
Boot Mapping

The hardware condition is based on the ISP# pin. When driving this pin to low level, the chip
reset sets ENBOOT and forces the reset vector to F000h instead of 0000h in order to execute
the bootloader software.

As shown in Figure 2, the hardware condition always allows In-System recovery when user’s
memory has been corrupted.

Programmed
Condition Boot
Mapping

The programmed condition is based on the Bootloader Jump Bit (BLJB) in HSB (see Table 5).
As shown in Figure 2, this bit is programmed (by hardware or software programming mode), the
chip reset set ENBOOT and forces the reset vector to F000h instead of 0000h, in order to exe-
cute the bootloader software.
6
4254C–MP3–03/06

AT89C51SND1

AT89C51SND1

Figure 2. Boot Process Algorithm

H
ar

dw
ar

e
So

ftw
ar

e

Hard Cond?
ISP# = L?

RESET

Hard Cond Init
ENBOOT = 1
PC = F000h
FCON = 00h

Prog Cond?
BLJB = P?

Standard Init
ENBOOT = 0
PC = 0000h
FCON = F0h

Prog Cond Init
ENBOOT = 1
PC = F000h
FCON = F0h

User’s
Application

Pr
oc

es
s

Pr
oc

es
s

Hard Init?
FCON = 00h?

User Boot?
SBV < F0h?

User’s
Bootloader

Atmel’s
Bootloader
7
4254C–MP3–03/06

Registers

Special Function
Register

Table 4. AUXR1 Register
AUXR1 (S:A2h) – Auxiliary Register 1

Reset Value = XXXX 00X0b
Note: 1. ENBOOT bit is only available in AT89C51SND1 product.

Hardware Bytes Table 5. HSB Byte – Hardware Security Byte

Reset Value = XXUU UXXX, UUUU UUUU after an hardware full chip erase.

7 6 5 4 3 2 1 0

- - ENBOOT - GF3 0 - DPS

Bit Number
Bit

Mnemonic Description

7 - 6 - Reserved
The value read from these bits are indeterminate. Do not set these bits.

5 ENBOOT(1)

Enable Boot Flash
Set this bit to map the boot Flash in the code space between at addresses F000h to
FFFFh.
Clear this bit to disable boot Flash.

4 - Reserved
The value read from this bit is indeterminate. Do not set this bit.

3 GF3 General Flag
This bit is a general-purpose user flag.

2 0 Always Zero
This bit is stuck to logic 0 to allow INC AUXR1 instruction without affecting GF3 flag.

1 - Reserved for Data Pointer Extension.

0 DPS
Data Pointer Select Bit
Set to select second data pointer: DPTR1.
Clear to select first data pointer: DPTR0.

7 6 5 4 3 2 1 0

X2B BLJB - - - LB2 LB1 LB0

Bit Number
Bit

Mnemonic Description

7 X2B(1)
X2 Bit
Program this bit to start in X2 mode.
Unprogram (erase) this bit to start in standard mode.

6 BLJB(2)
Boot Loader Jump Bit
Program this bit to execute the boot loader at address F000h on next reset.
Unprogram (erase) this bit to execute user’s application at address 0000h on next reset.

5-4 - Reserved
The value read from these bits is always unprogrammed. Do not program these bits.

3 -(3) Reserved
The value read from this bit is always unprogrammed. Do not program this bit.

2-0 LB2:0(3) Hardware Lock Bits
Refer to for bits description.
8
4254C–MP3–03/06

AT89C51SND1

AT89C51SND1

Note: 1. X2B initializes the X2 bit in CKCON during the reset phase.

2. In order to ensure boot loader activation at first power-up, AT89C51SND1 products are deliv-
ered with BLJB programmed.

3. Bits 0 to 3 (LSN) can only be programmed by hardware mode.

Reset Value = XXXX XXXX, UUUU UUUU after an hardware full chip erase.

Reset Value = XXXX XXXX, UUUU UUUU after an hardware full chip erase.

Physical Layer The USB norm specifies all the transfers over the USB line. The USB specification also includes
several CLASS and SUB-CLASS specifications. These stand-alone documents are used by the
manufacturer to implement a USB link between a PC and a device supporting the In-System
Programming. Mostly, the USB specification is implemented by hardware (automatic reply,
handshakes, timings, …) and the USB Classes and SubClasses are implemented by software at
a data level.

Figure 3. USB Bus Topography

The USB used to transmit information has the following configuration:
• USB DFU using the Default Control Endpoint only (endpoint 0) with a 32 bytes length.
• 48 MHz for USB controller: frequency auto-detection performed by the bootloader.

Table 6. SBV Byte – Software Boot Vector
7 6 5 4 3 2 1 0

ADD15 ADD14 ADD13 ADD12 ADD11 ADD10 ADD9 ADD8

Bit Number
Bit

Mnemonic Description

7-0 ADD15:8 MSB of the user’s boot loader 16-bit address location
Refer to the boot loader datasheet for usage information (boot loader dependent)

Table 7. SSB Byte – Software Security Byte
7 6 5 4 3 2 1 0

SSB7 SSB6 SSB5 SSB4 SSB3 SSB2 SSB1 SSB0

Bit Number
Bit

Mnemonic Description

7-0 SSB7:0 Software Security Byte Data
Refer to the boot loader datasheet for usage information (boot loader dependent)

PC (Host)

Application (Device)
USB line

Downstream Transfer: OUT

Upstream Transfer: IN

PC Driver
PC Application

Device driver/API
Firmware
9
4254C–MP3–03/06

48 MHz Frequency
Auto-generation

The following table shows the allowed frequencies compatible with the USB bootloader 48 MHz
auto-generation.

12 MHz 16 MHz 20 MHz

X1 - X2 OK OK OK
10
4254C–MP3–03/06

AT89C51SND1

AT89C51SND1

Figure 4. 48 MHz Frequency Auto-generation

MAIN

USB Connected?
Suspend/Resume

Configure PLL for
Frequency X

Configure Timer 0

SOF Detected?

Timer 0 Overflow?

USB Scheduler

Change Frequency

Resume
Detected?

Yes

No

No

Yes

Yes

No

Yes

No
11
4254C–MP3–03/06

Protocol

Device Firmware
Upgrade Introduction

Device Firmware Upgrade is the mechanism for accomplishing the task of upgrading the device
firmware. Any class of USB device can exploit this capability by supporting the requirements
specified in this document.

Because it is impractical for a device to concurrently perform both DFU operations and its nor-
mal run-time activities, those normal activities must cease for the duration of the DFU
operations. Doing so means that the device must change its operating mode; i.e., a printer is not
a printer while it is undergoing a firmware upgrade; it is a PROM programmer. However, a
device that supports DFU is not capable of changing its mode of operation on its own. External
(human or host operating system) intervention is required.

DFU Specific
Requests

In addition of the USB standard requests, 7 DFU class-specific requests are employed to
accomplish the upgrade operations, see Figure 4.

DFU Descriptors Set The device exports the DFU descriptor set, which contains:
• A DFU device descriptor
• A single configuration descriptor
• A single interface descriptor (including descriptors for alternate settings, if present)
• A single functional descriptor

DFU Device Descriptor This descriptor is only present in the DFU mode descriptor set. The DFU class code is reported
in the bDeviceClass field of this descriptor.

Table 9. USB Parameters

Table 8. DFU Class-specific Requests
bmRequestType bRequest wValue wIndex wLength Data

0010 0001b DFU_DETACH (0) wTimeout Interface (4) Zero none

0010 0001b DFU_DNLOAD (1) wBlock Interface (4) Length Firmware

1010 0001b DFU_UPLOAD (2) wBlock Interface (4) Length Firmware

1010 0001b DFU_GETSTATUS (3) Zero Interface (4) 6 Status

0010 0001b DFU_CLRSTATUS (4) Zero Interface (4) Zero none

1010 0001b DFU_GETSTATE (5) Zero Interface (4) 1 State

0010 0001b DFU_ABORT (6) Zero Interface (4) Zero none

Parameter ATMEL - AT89C51SND1 Bootloader

Vendor ID 0x03EB

Product ID 0x2FFF

Release Number 0x0000
12
4254C–MP3–03/06

AT89C51SND1

AT89C51SND1

Table 10. DFU Mode Device Descriptor

DFU Configuration
Descriptor

This descriptor is identical to the standard configuration descriptor described in the USB DFU
specification version 1.0, with the exception that the bNumInterfaces field must contain the value
01h.

DFU Interface
Descriptor

This is the descriptor for the only interface available when operating in DFU mode. Therefore,
the value of the bInterfaceNumber field is always zero.

Table 11. DFU mode Interface Descriptor

Note: 1. Alternate settings can be used by an application to access additional memory seg-
ments. In this case, it is suggested that each alternate setting employs a string
descriptor to indicate the target memory segment; e.g., “EEPROM”. Details concerning other

Offset Field Size Value Description

0 bLength 1 12h Size of this descriptor, in bytes

1 bDescriptorType 1 01h DFU FUNCTIONAL descriptor type

2 bcdUSB 2 0100h USB specification release number in binary coded decimal

4 bDeviceClass 1 FEh Application Specific Class Code

5 bDeviceSubClass 1 01h Device Firmware Upgrade Code

6 bDeviceProtocol 1 00h The device does not use a class specific protocol on this
interface

7 bMaxPacketSize0 1 32 Maximum packet size for endpoint zero

8 idVendor 2 03EBh Vendor ID

10 idProduct 2 2FFFh Product ID

12 bcdDevice 2 0x0000 Device release number in binary coded decimal

14 iManufacturer 1 0 Index of string descriptor

15 iProduct 1 0 Index of string descriptor

16 iSerialNumber 1 0 Index of string descriptor

17 bNumConfigurations 1 01h One configuration only for DFU

Offset Field Size Value Description

0 bLength 1 09h Size of this descriptor, in bytes

1 bDescriptorType 1 04h INTERFACE descriptor type

2 bInterfaceNumber 1 00h Number of this interface

3 bAlternateSetting 1 00h Alternate setting (1)

4 bNumEndpoints 1 00h Only the control pipe is used

5 bInterfaceClass 1 FEh Application Specific Class Code

6 bInterfaceSubClass 1 01h Device Firmware Upgrade Code

7 bInterfaceProtocol 1 00h The device doesn’t use a class specific protocol on
this interface

8 iInterface 1 00h Index of the String descriptor for this interface
13
4254C–MP3–03/06

possible uses of alternate settings are beyond the scope of this document. However, their use
is intentionally not restricted because it is anticipated that implementers will devise additional
creative uses for alternate settings.

DFU Functional
Descriptor

Command Description This protocol allows to:
• Initiate the communication
• Program the Flash Data
• Read the Flash Data
• Program Configuration Information
• Read Configuration and Manufacturer Information
• Erase the Flash
• Start the application

Overview of the protocol is detailed in Appendix-A.

Table 12. DFU Functional Descriptor
Offset Field Size Value Description

0 bLength 1 07h Size of this descriptor, in bytes

1 bDescriptorType 1 21h DFU FUNCTIONAL descriptor type

2 bmAttributes 1 Bit mask

DFU Attributes:
bit 7:3: reserved
bit 2: device is able to communicate via USB after
Manifestation phase
1 = yes, 0 = no, must see bus reset
bit 1: bitCanUpload: upload capable 1 = yes, 0 = no
bit 0: bitCanDnload: download capable 1 = yes, 0 = no

3 wDetachTimeOut 2 Number

Time in milliseconds that the device will wait after receipt
of the DFU_DETACH request.
If this time elapses without a USB reset, the device will
terminate the Reconfiguration phase and revert back to
normal operation. This represents the maximum time that
the device can wait (depending on its timers, ...). The
Host may specify a shorter timeout in the DFU_DETACH
request.

5 wTransferSize 2 Number Maximum number of bytes that the device can accept per
control-write transaction
14
4254C–MP3–03/06

AT89C51SND1

AT89C51SND1
Device Status

Get Status The Host employs the DFU_GETSTATUS request to facilitate synchronization with the device.
This status gives information on the execution of the previous request: in progress/OK/Fail/...

The device responds to the DFU_GETSTATUS request with a payload packet containing the fol-
lowing data:

bmRequestType bRequest wValue wIndex wLength Data

1010 0001b DFU_GETSTATUS (3) Zero Interface (4) 6 Status

0010 0001b DFU_CLRSTATUS (4) Zero Interface (4) Zero none

Table 13. DFU_GETSTATUS Response
Offset Field Size Value Description

0 bStatus 1 Number An indication of the status resulting from the execution of the most
recent request.

1 bwPollTime
Out 3 Number

Minimum time in milliseconds that the host should wait before sending
a subsequent DFU_GETSTATUS. The purpose of this field is to allow
the device to dynamically adjust the amount of time that the device
expects the host to wait between the status phase of the next
DFU_DNLOAD and the subsequent solicitation of the device’s status
via DFU_GETSTATUS.

4 bState 1 Number An indication of the state that the device is going to enter immediately
following transmission of this response.

5 iString 1 Index Index of status description in string table.

Table 14. bStatus Values
Status Value Description

OK 0x00 No error condition is present

errTARGET 0x01 File is not targeted for use by this device

errFILE 0x02 File is for this device but fails some vendor-specific verification test

errWRITE 0x03 Device id unable to write memory

errERASE 0x04 Memory erase function failed

errCHECK_ERASE
D 0x05 Memory erase check failed

errPROG 0x06 Program memory function failed

errVERIFY 0x07 Programmed memory failed verification

errADDRESS 0x08 Cannot program memory due to received address that is out of range

errNOTDONE 0x09 Received DFU_DNLOAD with wLength = 0, but device does not think it has all the
data yet

errFIRMWARE 0x0A Device’s firmware is corrupted. It cannot return to run-time operations
15
4254C–MP3–03/06

Clear Status Any time the device detects an error and reports an error indication status to the host in the
response to a DFU_GETSTATUS request, it enters the dfuERROR state. The device cannot
transition from the dfuERROR state, after reporting any error status, until after it has received a
DFU_CLRSTATUS request. Upon receipt of DFU_CLRSTATUS, the device sets a status of OK
and transitions to the dfuIDLE state. Only then it is able to transition to other states.

errVENDOR 0x0B iString indicates a vendor-specific error

errUSBR 0x0C Device detected unexpected USB reset signaling

errPOR 0x0D Device detected unexpected power on reset

errUNKNOWN 0x0E Something went wrong, but the device does not know what it was

errSTALLEDPK 0x0F Device stalled an unexpected request

Table 15. bState Values
State Value Description

appIDLE 0 Device is running its normal application

appDETACH 1 Device is running its normal application, has received the DFU_DETACH
request, and is waiting for a USB reset

dfuIDLE 2 Device is operating in the DFU mode and is waiting for requests

dfuDNLOAD-SYNC 3 Device has received a block and is waiting for the Host to solicit the status via
DFU_GETSTATUS

dfuDNBUSY 4 Device is programming a control-write block into its non-volatile memories

dfuDNLOAD-IDLE 5 Device is processing a download operation. Expecting DFU_DNLOAD requests

dfuMANIFEST-SYNC 6

Device has received the final block of firmware from the Host and is waiting for
receipt of DFU_GETSTATUS to begin the Manifestation phase
or
device has completed the Manifestation phase and is waiting for receipt of
DFU_GETSTATUS.

dfuMANIFEST 7 Device is in the Manifestation phase.

dfuMANIFEST-WAIT-
RESET 8 Device has programmed its memories and is waiting for a USB reset or a power

on reset.

dfuUPLOAD-IDLE 9 The device is processing an upload operation. Expecting DFU_UPLOAD
requests.

dfuERROR 10 An error has occurred. Awaiting the DFU_CLRSTATUS request.

Table 14. bStatus Values (Continued)
Status Value Description

bmRequestType bRequest wValue wIndex wLength Data

0010 0001b DFU_CLRSTATUS (4) Zero Interface (4) 0 None
16
4254C–MP3–03/06

AT89C51SND1

AT89C51SND1

Device State This request solicits a report about the state of the device. The state reported is the current state

of the device with no change in state upon transmission of the response. The values specified in
the bState field are identical to those reported in DFU_GETSTATUS.

DFU_ABORT Request The DFU_ABORT request enables the device to exit from certain states and return to the
DFU_IDLE state. The device sets the OK status on receipt of this request. For more information,
see the corresponding state transition summary.

Programming the
Flash

The firmware image is downloaded via control-write transfers initiated by the DFU_DNLOAD
class-specific request. The host sends between bMaxPacketSize0 and wTransferSize bytes to
the device in a control-write transfer. Following each downloaded block, the host solicits the
device status with the DFU_GETSTATUS request.

As described in the USB DFU Specification, Firmware images for specific devices are, by defini-
tion, vendor specific. It is therefore required that target addresses, record sizes, and all other
information relative to supporting an upgrade are encapsulated within the firmware image file. It
is the responsibility of the device manufacturer and the firmware developer to ensure that their
devices can consume these encapsulated data. With the exception of the DFU file suffix, the
content of the firmware image file is irrelevant to the host.

Firmware image:
• 32 bytes: Command
• X bytes: X is the number of byte (00h) added before the first significative byte of the

firmware. The X number is calculated to align the beginning of the firmware with the Flash
page. X = start_address [32]. For example, if the start address is 00AFh (175d), X = 175 [32]
= 15.

• The firmware
• The DFU Suffix on 16 Bytes

bmRequestType bRequest wValue wIndex wLength Data

1010 0001b DFU_GETSTATE (5) Zero Interface (4) 1 State

bmRequestType bRequest wValue wIndex wLength Data

1010 0001b DFU_ABORT (6) Zero Interface (4) 0 None

Table 16. DFU File Suffix
Offset Field Size Value Description

- 0 dwCRC 4 Number The CRC of the entire file, excluding dwCRC

- 4 bLength 1 16 The length of this DFU suffix including dwCRC

- 5 ucDfuSignature 3
5: 44h
6: 46h
7: 55h

The unique DFU signature field

- 8 bcdDFU 2
BCD

0100h
DFU specification number

- 10 idVendor 2 ID The vendor ID associated with this file. Either FFFFh
or must match device’s vendor ID
17
4254C–MP3–03/06

Request from Host

Write Command

The write command is 6 bytes long. In order to reach the USB specification of the Control type
transfers, the write command is completed with 26 (=32-6) non-significant bytes. The total length
of the command is then 32 bytes, which is the length of the Default Control Endpoint.

Firmware The firmware can now be downloaded to the device. In order to be in accordance with the Flash
page size (128 bytes), X non-significant bytes are added before the first byte to program. The X
number is calculated to align the beginning of the firmware with the Flash page. X =
start_address [32]. For example, if the start address is 00AFh (175d), X = 175 [32] = 15.

DFU Suffix The DFU suffix of 16 bytes are added just after the last byte to program. This suffix is reserved
for future use.

- 12 idProduct 2 ID The product ID associated with this file. Either FFFFf
or must match device’s product ID

- 14 bcdDevice 2 BCD
The release number of the device associated with this
file. Either FFFFh or a BCD firmware release or
version number

Table 16. DFU File Suffix
Offset Field Size Value Description

bmRequestType bRequest wValue wIndex wLength Data

0010 0001b DFU_DNLOAD (1) wBlock Interface (4) Length Firmware

Command Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_prog_start
01h

00h start_address end_address Init Flash programming
18
4254C–MP3–03/06

AT89C51SND1

AT89C51SND1

Figure 5. Example of Firmware Download Zero Length DFU_DNLOAD Request

The Host sends a DFU_DNLOAD request with the wLength field cleared to 0 to the device to
indicate that it has completed transferring the firmware image file. This is the final payload
packet of a download operation.

This operation should be preceded by a Long Jump address specification using the correspond-
ing Flash command.

Answers from
Bootloader

After each program request, the Host can request the device state and status by sending a
DFU_GETSTATUS message.
If the device status indicates an error, the host can send a DFU_CLRSTATUS request to the
device.

Reading the Flash The flow described below allows the user to read data in the Flash memory. A blank check com-
mand on the Flash memory is possible with this flow.

This operation is performed in 2 steps:
1. DFU_DNLOAD request with the read command (6 bytes)
2. DFU_UPLOAD request which correspond to the immediate previous command.

First Request from Host The Host sends a DFU Download request with a Display command in the data field.

OUT Prog_Start + (EP0 FIFO length - 6) x 00h

SETUP DFU_DNLOAD

OUT X offset bytes + Firmware Packet 1

OUT Firmware Packet 2

OUT Firmware Packet n + DFU suffix

IN ZLP

OUT Display_Data (6 bytes)

SETUP DFU_DNLOAD

IN ZLP
19
4254C–MP3–03/06

Second Request from
Host

The Host sends a DFU Upload request.

Answers from the
Device

The device send to the Host the firmware from the specified start address to the end address.

Answers from the
Device to a Blank Check
Command

The Host controller send a GET_STATUS request to the device. Once internal blank check has
been completed, the device sends its status.
• If the device status is “OK”:

the device memory is then blank and the device waits the next Host request.
• If the device status is “errCHECK_ERASED”:

the device memory is not blank. The device waits for an DFU_UPLOAD request to send the
first address where the byte is not 0xFF.

Command Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_display_data
03h

00h
start_address end_address

Display Flash Data

01h Blank Check in Flash

IN Firmware Packet 1

IN Firmware Packet 2

IN Firmware Packet n

OUT ZLP

SETUP DFU_UPLOAD
20
4254C–MP3–03/06

AT89C51SND1

AT89C51SND1
Programming
Configuration
Information

The flow described below allows the user to program Configuration Information regarding the
bootloader functionality.
• Boot Process Configuration:

– BSB
– SBV
– Fuse bits (BLJB, X2B) (see Section “Mapping and Default Value of Hardware Security

Byte”, page 3).

Ensure that the Program Fuse bit command programs the 4 Fuse bits at the same time.

Request from Host To start the programming operation, the Host sends DFU_DNLOAD request with the Write com-
mand in the data field (6 bytes).

Answers from
Bootloader

The device has two possible answers to a DFU_GETSTATUS request:
• If the chip is protected from program access, a “err_WRITE” status is returned to the Host.
• Otherwise, the device status is “OK“.

Command Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_write_command
04h

01h

00h

Value

Write value in BSB

01h Write value in SBV

05h Write value in SSB

06h Write value in EB

02h 00h Value Write value in Fuse (HSB)

OUT Write_command (6 bytes)

SETUP DFU_DNLOAD

IN ZLP
21
4254C–MP3–03/06

Reading Configuration
Information or
Manufacturer
Information

The flow described below allows the user to read the configuration or manufacturer information.

Requests from Host To start the programming operation, the Host sends DFU_DNLOAD request with the Read com-
mand in the data field (2 bytes).

Command Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_read_command
05h

00h

00h Read Bootloader Version

01h Read Device boot ID1

02h Read Device boot ID2

01h

00h Read BSB

01h Read SBV

05h Read SSB

06h Read EB

30h Read Manufacturer Code

31h Read Family Code

60h Read Product Name

61h Read Product Revision

02h 00h Read HWB

OUT Read_command (2 bytes)

SETUP DFU_DNLOAD

IN ZLP
22
4254C–MP3–03/06

AT89C51SND1

AT89C51SND1

Answers from
Bootloader

The device has two possible answers to a DFU_GETSTATUS request:
• If the chip is protected from program access, a “err_VENDOR” status is returned to the Host.
• Otherwise, the device status is “OK“. The Host can send a DFU_UPLOAD request to the

device in order the value of the requested field.

IN Byte value (1 byte)

SETUP DFU_UPLOAD

OUT ZLP
23
4254C–MP3–03/06

Erasing the Flash The flow described below allows the user to erase the Flash memory.

Two modes of Flash erasing are possible:
• Full chip erase
• Block erase

The Full Chip erase command erases the whole Flash (32 Kbytes) and sets some Configuration
Bytes at their default values:
• BSB = FFh
• SBV = FFh
• SSB = FFh (NO_SECURITY)

The Block erase command erases only a part of the Flash.

Four Blocks are defined in the AT89C51SND1:
• block0 (from 0000h to 1FFFh)
• block1 (from 2000h to 3FFFh)
• block2 (from 4000h to 7FFFh)
• block3 (from 8000h to FFFFh)

Request From Host To start the erasing operation, the Host sends a DFU_DNLOAD request with a Write Command
in the data field (2 bytes).

Answers from
Bootloader

The device has two possible answers to a DFU_GETSTATUS request:
• If the chip is protected from program access, a “err_WRITE” status is returned to the Host.
• Otherwise, the device status is “OK“.

The full chip erase is always executed whatever the Software Security Byte value is.

Command Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_write_command
04h

00h

00h Erase block0 (0K to 8K)

20h Erase block1 (8K to 16K)

40h Erase block2 (16K to 32K)

80h Erase block3 (32K to 64K)

FFh Full Chip Erase (bits at FFh)
24
4254C–MP3–03/06

AT89C51SND1

AT89C51SND1
Starting the
Application

The flow described below allows to start the application directly from the bootloader upon a spe-
cific command reception.

Two options are possible:
• Start the application with a reset pulse generation (using watchdog).

When the device receives this command the watchdog is enabled and the bootloader enters
a waiting loop until the watchdog resets the device.
Be aware that if an external reset chip is used, the reset pulse in output may be wrong and in
this case the reset sequence is not correctly executed.

• Start the application without reset
A jump at the address 0000h is used to start the application without reset.

To start the application, the Host sends a DFU_DNLOAD request with the specified application
start type in the data field (3 or 5 bytes).

This request is immediately followed by a second DFU_DNLOAD request with no data field to
start the application with one of the two options.

Request from Host

Answer from Bootloader No answer is returned by the device.

IN Jump option (3 or 5 bytes)

SETUP DFU_UPLOAD

OUT ZLP

SETUP DFU_UPLOAD

Command Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_write_command
04h 03h

00h Hardware reset

01h address LJMP address
25
4254C–MP3–03/06

In-Application
Programming/S
elf-
Programming

The IAP allows to reprogram the microcontroller on-chip Flash memory without removing it from
the system and while the embedded application is running.

The user application can call Application Programming Interface (API) routines allowing IAP.
These API are executed by the bootloader.

To call the corresponding API, the user must use a set of Flash_api routines which can be linked
with the application.

Example of Flash_api routines are available on the Atmel web site:

C Flash Drivers for the AT89C51SND1

The Flash_api routines on the package work only with the USB bootloader.

The Flash_api routines are listed in APPENDIX-B.

API Call

Process The application selects an API by setting the 4 variables available when the Flash_api library is
linked to the application.

These four variables are located in RAM at fixed address:
• api_command: 1Ch
• api_value: 1Dh
• api_dph: 1Eh
• api_dpl: 1Fh

All calls are made through a common interface “USER_CALL” at the address FFC0h.

The jump at the USER_CALL must be done by LCALL instruction to be able to comeback in the
application.

Before jump at the USER_CALL, the bit ENBOOT in AUXR1 register must be set.

Constraints The interrupts are not disabled by the bootloader.

Interrupts must be disabled by user prior to jump to the USER_CALL, then re-enabled when
returning.

The user must take care of hardware watchdog before launching a Flash operation.

For more information regarding the Flash writing time see the AT89C51SND1 datasheet.
26
4254C–MP3–03/06

AT89C51SND1

AT89C51SND1
API Commands Several types of APIs are available:
• Read/Program Flash memory
• Read Configuration and Manufacturer Information
• Program Configuration Information
• Erase Flash
• Start bootloader

Read/Program Flash
Memory

To read the Flash memory the bootloader is not involved.

For more details on these routines see the AT89C51SND1 Datasheet section “Program/Code
Memory”.

Two routines are available to program the Flash:
– __api_wr_code_byte
– __api_wr_code_page

• The application program load the column latches of the Flash then call the
__api_wr_code_byte or __api_wr_code_page see the datasheet section “Program/Code
Memory”.

• Parameter settings

• Instruction: LCALL FFC0h.
Note: No special resources are used by the bootloader during this operation

API Name api_command api_dph api_dpl api_value

__api_wr_code_byte
__api_wr_code_page

0Dh – – –
27
4254C–MP3–03/06

Read Configuration
and Manufacturer
Information

• Parameter settings

• Instruction: LCALL FFC0h.
• At the complete API execution by the bootloader, the value to read is in the api_value

variable.
Note: No special resources are used by the bootloader during this operation

API Name api_command api_dph api_dpl api_value

__api_rd_HSB 08h – 00h return HSB

__api_rd_BSB 05h – 00h return BSB

__api_rd_SBV 05h – 01h return SBV

__api_rd_SSB 05h – 05h return SSB

__api_rd_EB 05h – 06h return EB

__api_rd_manufacturer 05h – 30h return manufacturer
id

__api_rd_device_id1 05h – 31h return id1

__api_rd_device_id2 05h – 60h return id2

__api_rd_device_id3 05h – 61h return id3

__api_rd_bootloader_version 0Eh – 00h return value
28
4254C–MP3–03/06

AT89C51SND1

AT89C51SND1

Program
Configuration
Information

• Parameter settings

• Instruction: LCALL FFC0h.
Notes: 1. Unprogram BLJB so disable bootloader exection at reset.

2. Program BLJB so enable bootloader exection at reset.
3. Unprogram X2B so disable X2 mode at reset.
4. Program X2B so enable X2 mode at reset.
5. Refer to the AT89C51SND1 datasheet for information on Write operation Timing.
6. No special resources are used by the bootloader during these operations.

Erasing the Flash The AT89C51SND1 Flash memory is divided into four blocks:

Block 0: from address 0000h to 1FFFh (64 pages)

Block 1: from address 2000h to 3FFFh (64 pages)

Block 2: from address 4000h to 7FFFh (128 pages)

Block 3: from address 8000h to FFFFh (256 pages)

• Parameter settings

• Instruction: LCALL FFC0h.
Notes: 1. Refer to the AT89C51SND1 datasheet for information on Write operation Timing, then multiply

this timing by the number of pages.
2. No special resources are used by the bootloader during these operations.

Starting the
Bootloader

This routine allows to start at the beginning of the bootloader as after a reset. After calling this
routine the regular boot process is performed and the communication must be opened before
any action.
• No special parameter setting
• Set bit ENBOOT in AUXR1 register
• instruction: LJUMP or LCALL at address F000h

API Name api_command api_dph api_dpl api_value

__api_clr_BLJB(1) 07h – –
(HSB & BFh) |

40h

__api_set_BLJB(2) 07h – – HSB & BFh

__api_clr_X2(3) 07h – –
(HSB & 7Fh) |

80h

__api_set_X2(4) 07h – – HSB & 7Fh

__api_wr_BSB 04h – 00h value to write

__api_wr_SBV 04h – 01h value to write

__api_wr_SSB 04h – 05h value to write

__api_wr_EB 04h – 06h value to write

API Name api_command api_dph api_dpl api_value

__api_erase_block0 00h 00h – –

__api_erase_block1 00h 20h – –

__api_erase_block2 00h 40h – –

__api_erase_block3 00h 80h – –
29
4254C–MP3–03/06

Appendix A Table 17. Summary of Frames from Host

Command Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_prog_start
01h

00h start_address end_address Init Flash programming

Id_display_data
03h

00h
start_address end_address

Display Flash Data

01h Blank Check in Flash

Id_write_command
04h

00h

00h Erase block0 (0K to 8K)

20h Erase block1 (8K to 16K)

40h Erase block2 (16K to 32K)

80h Erase block3 (32K to 64K)

FFh Full Chip Erase (bits at FFh)

01h

00h

Value

Write value in BSB

01h Write value in SBV

05h Write value in SSB

06h Write value in EB

02h 00h
Value

Write value in Fuse (HSB)

03h
00h Hardware reset

01h address LJMP address

Id_read_command
05h

00h

00h Read Bootloader Version

01h Read Device boot ID1

02h Read Device boot ID2

01h

00h Read BSB

01h Read SBV

05h Read SSB

06h Read EB

30h Read Manufacturer Code

31h Read Family Code

60h Read Product Name

61h Read Product Revision

02h 00h Read HWB

Table 18. DFU Class-specific Requests
bmRequestType bRequest wValue wIndex wLength Data

0010 0001b DFU_DETACH (0) wTimeout Interface (4) Zero none
30
4254C–MP3–03/06

AT89C51SND1

AT89C51SND1
0010 0001b DFU_DNLOAD (1) wBlock Interface (4) Length Firmware

1010 0001b DFU_UPLOAD (2) wBlock Interface (4) Length Firmware

1010 0001b DFU_GETSTATUS (3) Zero Interface (4) 6 Status

0010 0001b DFU_CLRSTATUS (4) Zero Interface (4) Zero none

1010 0001b DFU_GETSTATE (5) Zero Interface (4) 1 State

0010 0001b DFU_ABORT (6) Zero Interface (4) Zero none

Table 18. DFU Class-specific Requests
bmRequestType bRequest wValue wIndex wLength Data
31
4254C–MP3–03/06

Appendix B

Flash API
Routines
Table 19. API Summary

Function Name
Bootloader
Execution api_command api_dph api_dpl api_value

__api_rd_code_byte no

__api_wr_code_byte yes 0Dh

__api_wr_code_page yes 0Dh

__api_erase block0 yes 00h 00h

__api_erase block1 yes 00h 20h

__api_erase block2 yes 00h 40h

__api_erase block3 yes 00h 80h

__api_rd_HSB yes 08h 00h return value

__api_clr_BLJB yes 07h (HSB & BFh) | 40h

__api_set_BLJB yes 07h HSB & BFh

__api_clr_X2 yes 07h (HSB & 7Fh) | 80h

__api_set_X2 yes 07h HSB & 7Fh

__api_rd_BSB yes 05h 00h return value

__api_wr_BSB yes 04h 00h value

__api_rd_SBV yes 05h 01h return value

__api_wr_SBV yes 04h 01h value

__api_erase_SBV yes 04h 01h FFh

__api_rd_SSB yes 05h 05h return value

__api_wr_SSB yes 04h 05h value

__api_rd_EB yes 05h 06h return value

__api_wr_EB yes 04h 06h value

__api_rd_manufacturer yes 05h 30h return value

__api_rd_device_id1 yes 05h 31h return value

__api_rd_device_id2 yes 05h 60h return value

__api_rd_device_id3 yes 05h 61h return value

__api_rd_bootloader_version yes 0Eh 00h return value

__api_start_bootloader no

__api_start_isp no
32
4254C–MP3–03/06

AT89C51SND1

© Atmel Corporation 2006. All rights reserved. Atmel®, logo and combinations thereof, are registered trademarks, and Everywhere You Are®

are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedot-
herwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’sAtmel’s products are not intended, authorized, or warranted for use as
components in applications intended to support or sustain life.

Atmel Corporation Atmel Operations
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature
 Printed on recycled paper.

4254C–MP3–03/06

