3/5-Key 3D PS/2 Optical Mouse Controller

Feature

- Operating voltage: $4.0 \mathrm{~V} \sim 5.5 \mathrm{~V}$
- Microsoft Intelli 3D PS/2 and IBM PS/2 mouse compatible
- Microsoft Windows 2000 and 5-button Wheel mouse compatible
- Z-axis can support three kinds of scroller input divided by 2 or 4 (only for H2610 and H2620)

General Description

The HT82M30A is designed as 2D, 3D 3/5-key PS/2 optical mouse controller. These have serial interface to access the Agilent sensor H2051, H2610, H2620 or the

- Supports 400 or 800 DPI for H2051
- Serial interface with H2051, H2610, H2620
- Auto detect as to which photo sensor is used
- 2 MHz RC oscillator for system frequency with external pull-high resistor (140k Ω)
- 16/18-pin DIP package
same compatible series sensor. Refer to the datasheets for detailed register descriptions of the Agilent sensors.

Pin Assignment

RB	$1{ }^{1} \quad 16$	$\square \mathrm{RO}$
LB	15	$\square \mathrm{RBO}$
Z2/A	14	$\square \mathrm{PS} 2 \mathrm{D}$
Z1/B \square	13	$\square \mathrm{PS2C}$
RB1	12	$\square \mathrm{NC}$
SDIO	11	\square OSC1
SCLK	10	$\square \mathrm{VDD}$
vSS	8	$\square \overline{\mathrm{RES}}$
$\begin{aligned} & \text { HT82M30A } \\ & \text { - } 16 \text { DIP-A } \end{aligned}$		

HT82M30A

Pin Description

Pin Name	I/O	Description
RB, RO, LB	1	Right Button: Normal pull-high resistor (30k Ω) Rolling Button: Normal pull-high resistor (30k Ω) Left Button: Normal pull-high resistor ($30 \mathrm{k} \Omega$)
Z2/A, Z1/B	1	"Z" axis input supports three kinds of scroller input Normal pull-high resistor (30k)
RB1, RB0	1	Input ports with $30 \mathrm{k} \Omega$ pull-high resistor
SDIO	I/O	Serial data for Agilent sensor IC SDIO
SCLK	0	Serial data for Agilent sensor IC SCLK
VSS	-	Negative power supply, ground
SEL1, SEL2	1	For configuring the H2051 400 or 800 DPI, and the Z-axis type (divided by 2 or 4) For H2051 SEL1=1 800 DPI (default) SEL1=0 400 DPI SEL2=1 Z-axis is divided by 2 (default) SEL2=0 Z-axis is divided by 4 For H2610 or H2620 [SEL1, SEL2] $=\{0,0\}$ Z-axis divided by 4 [SEL1, SEL2]=\{0,1\} Z-axis divided by 4 [SEL1, SEL2]=\{1,1\} Z-axis divided by 2 (default)
$\overline{\text { RES }}$	1	Chip reset input, Low active
VDD	-	5 V positive power supply
OSCI	1	2 MHz RC oscillator for system frequency with external pull-high resistor (140k)
NC	-	No connection
PS2CK	I/O	PS/2 mouse CLK line
PS2D	I/O	PS/2 mouse data line

Absolute Maximum Ratings

Supply Voltage	. $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\text {SS }}+6.0 \mathrm{~V}$	Storage Temperature $-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Input Voltage	. $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{SS}}+6.0 \mathrm{~V}$	Operating Temperature....................... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics							$=25^{\circ} \mathrm{C}$
Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		V_{DD}	Conditions				
$V_{D D}$	Operating Voltage	-	$\mathrm{f}_{\mathrm{SYS}}=2 \mathrm{MHz}$	4.0	5.0	5.5	V
I_{DD}	Operating Current	5 V	No load, $\mathrm{f}_{\text {SYS }}=2 \mathrm{MHz}$	-	2.5	4	mA
$V_{\text {IL1 }}$	Input Low Voltage for RB, LB, RO, Z1, Z2, RB1, RB0, SDIO, SEL1, SEL2, PS2CK and PS2D	-	-	0	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\mathrm{H}+1}$	Input High Voltage for RB, LB, RO, Z1, Z2, RB1, RB0, SDIO, SEL1, SEL2, PS2CK and PS2D	-	-	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{D D}$	V
$\mathrm{V}_{\mathrm{IL} 2}$	Input Low Voltage for $\overline{\text { RES }}$	-	-	0	-	$0.4 \mathrm{~V}_{\text {DD }}$	V
$\mathrm{V}_{\mathrm{H} 2}$	Input High Voltage for $\overline{\text { RES }}$	-	-	$0.9 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
l L	I/O Port Sink Current	5 V	$\mathrm{V}_{\mathrm{OL}}=0.1 \mathrm{~V}_{\mathrm{DD}}$	10	20	-	mA
$\mathrm{IOH}^{\text {O}}$	I/O Port Source Current	5 V	$\mathrm{V}_{\mathrm{OL}}=0.9 \mathrm{~V}_{\mathrm{DD}}$	-2	-4	-	mA
R_{PH}	Pull-high Resistance for RB, LB, RO, Z1, Z2, RB1, RB0, SDIO, SEL1, SEL2, PS2CK and PS2D	5 V	-	10	30	50	$\mathrm{k} \Omega$

A.C. Characteristics

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		V_{DD}	Conditions				
twdTosc	Watchdog Oscillator Period	5 V	-	32	65	130	$\mu \mathrm{S}$
$t_{\text {WDT1 }}$	Watchdog Time-out Period	5 V	Without WDT prescaler	8	17	33	ms
$\mathrm{t}_{\text {RES }}$	External Reset Low Pulse Width	-	-	1	-	-	$\mu \mathrm{S}$

Functional Description

PS/2 Mouse

- PS/2 status byte

Byte 1
bit
7: Reserved
6: 0=Stream Mode, 1=Remote Mode
5: $0=$ Disabled, $1=$ Enabled
4: $0=$ Scaling $1: 1,1=$ Scaling $2: 1$
3: $1=$ Wrap Mode, $0=$ Stream or Remote (different from IBM specs.)
2: 1=Left Button Pressed
1: 1=Middle Button Pressed
0: 1=Right Button Pressed
Byte 2
Bit 0~7 current resolution setting
(Bit 0=LSB)
Byte 3
Bit $0 \sim 7$ current sampling rate (Bit $0=\mathrm{LSB}$)

- Standard PS/2 data format

Variable rps, 0, 8, 1, bidirectional, synchronous

Bit No.	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
1st word	YV	XV	YS	XS	1	MB	RO	LB
2nd word	X 7	X 6	X 5	X 4	X 3	X 2	X 1	X 0
3rd word	Y 7	Y 6	Y 5	Y 4	Y 3	Y 2	Y 1	Y 0

- Data format for 3D PS/2

Variable rps, 0, 8, 1, bidirectional, synchronous

Bit No.	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
1st word	YV	XV	YS	XS	$\mathbf{1}$	MB	RO	LB
2nd word	X 7	X 6	X 5	X 4	X 3	X 2	X 1	X 0
3rd word	Y 7	Y 6	Y 5	Y 4	Y 3	Y 2	Y 1	Y 0
4th word	Z 7	Z 6	$\mathrm{Z5}$	$\mathrm{Z4}$	Z 3	Z 2	Z 1	Z 0

The x / y data report is 9 -bit 2's complement
The z data report is 8 -bit 2's complement

- Data format for 5-button Wheel Mouse

Bit No.	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
1st word	0	0	YS	XS	1	MB	RO	LB
2nd word	X 7	X 6	X 5	X 4	X 3	X 2	X 1	X 0
3rd word	Y 7	Y 6	Y 5	Y 4	Y 3	Y 2	Y 1	Y 0
4th word	0	0	RB 1	RB 0	Z 3	Z 2	Z 1	Z 0

X- movement towards the right is positive, moving towards the left is negative

Y - upward movement is positive, moving down is negative

Z- rolling towards the user is positive, else negative
Button status: 1=pressed, 0=released

- Mouse mode changes between Standard and 3D PS/2 mode
Sending the commands in the following sequence will set the mouse to 3D PS/2 mode.

Command	Response From Mouse
F3h	FAh
C8h	FAh
F3h	FAh
64h	FAh
F3h	FAh
50h	FAh
F2h	FAh, 03h

- Mouse mode changes between Standard and Win2K PS/2 mode.
Sending the commands in the following sequence will set the mouse to Win2K PS/2 mode.

Command	Response From Mo
F3h	FAh
C8h	FAh
F3h	FAh
C8h	FAh
F3h	FAh
50h	FAh
F2h	FAh, 04h

- Any time the PC sends a reset "FFh" command to the mouse, it will reset the mouse to Standard PS/2 mode.
- After power-on reset is initiated, the mouse is set to Standard PS/2 mode.

Timing Diagrams

Z-Axis Photo-coupler Cross Width

Note: For Z-axis tr, tp, tf > 1ms

Z-Axis Counting

PS/2 Mouse

- Data output

(6)

	Timing Parameter	Min./Max.
T1	DATA transition to the falling edge of CLK	$5 / 25 \mu \mathrm{sec}$
T2	Rising edge of CLK to DATA transition	$5 / \mathrm{T} 4-5 \mu \mathrm{sec}$
T3	Inactive CLK Duration	$30 / 50 \mu \mathrm{sec}$
T4	Active CLK Duration	$30 / 50 \mu \mathrm{sec}$
T5	Minimum time to inhibit MOUSE after clock 11	$>0 \mu \mathrm{sec}$
T6	Maximum time to inhibit MOUSE after clock 11 to ensure that the MOUSE does not start another transmission	$<50 \mu \mathrm{sec}$

- Data input

	Timing Parameter	Min./Max.
T7	CLK Duration, low	$30 / 50 \mu \mathrm{sec}$
T8	CLK Duration, high	$30 / 50 \mu \mathrm{sec}$
T9	Time from low to high CLK transition to time when	$5 / 25 \mu \mathrm{sec}$
	MOUSE samples DATA line	

HT82M30A

Application Circuits

2D PS/2 Optical Mouse Controller (H2051)

3D PS/2 Optical Mouse Controller (H2051)

HT82M30A

Win2K PS/2 Optical Mouse Controller (H2051)

2D PS/2 Optical Mouse Controller (H2610)

HT82M30A

3D PS/2 Optical Mouse Controller (H2610)

Win2K PS/2 Optical Mouse Controller (H2610)

HT82M30A

2D PS/2 Optical Mouse Controller (H2620)

3D PS/2 Optical Mouse Controller (H2620)

HT82M30A

Win2K PS/2 Optical Mouse Controller (H2620)

HT82M30A Z-Axis Optomechanical (This Application Circuit is for Reference Only)

Note: * For resistor value selection, refer to high or low input level of Z1 and Z2 in the D.C. Characteristics table.
The recommended value is $6 \mathrm{k} \Omega$.

Package Information

16-pin DIP (300mil) Outline Dimensions

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	745	-	775
B	240	-	260
C	125	-	135
D	125	-	145
E	16	-	20
F	50	-	70
G	-	100	-
H	295	-	315
α	335	-	375
0°	-	15°	

18-pin DIP (300mil) Outline Dimensions

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	895	-	915
B	240	-	260
C	125	-	135
D	125	-	145
E	16	-	20
F	50	-	70
G	-	100	-
H	295	-	315
I	335	-	375
0°	-	15°	

Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw
Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)
Holtek Semiconductor Inc. (Shanghai Sales Office)
7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233
Tel: 021-6485-5560
Fax: 021-6485-0313
http://www.holtek.com.cn
Holtek Semiconductor Inc. (Shenzhen Sales Office)
43F, SEG Plaza, Shen Nan Zhong Road, Shenzhen, China 518031
Tel: 0755-8346-5589
Fax: 0755-8346-5590
ISDN: 0755-8346-5591
Holtek Semiconductor Inc. (Beijing Sales Office)
Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031
Tel: 010-6641-0030, 6641-7751, 6641-7752
Fax: 010-6641-0125
Holmate Semiconductor, Inc. (North America Sales Office)
46712 Fremont Blvd., Fremont, CA 94538
Tel: 510-252-9880
Fax: 510-252-9885
http://www.holmate.com

Copyright © 2004 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

