

High-Speed SRAM MODULE 4Mbyte(1M x 32-Bit) Part No. HMS1M32M8S, HMS1M32Z8S

### **GENERAL DESCRIPTION**

The HMS1M32M8S is a high-speed static random access memory (SRAM) module containing 1,048,576 words organized in a x32-bit configuration. The module consists of eight 512K x 8 SRAMs mounted on a 72-pin, double-sided, FR4-printed circuit board.

The HMS1M32M8S also support low data retention voltage for battery back-up operations with low data retention current. Eight chip enable inputs, (/CE\_UU1, /CE\_UM1, /CE\_LM1, /CE\_LL1, /CE\_UU2, /CE\_UM2, /CE\_LM2, /CE\_LL2) are used to enable the module's 4 bytes independently. Output enable (/OE) and write enable(/WE) can set the memory input and output.

Data is written into the SRAM memory when write enable (/WE) and chip enable (/CE) inputs are both LOW. Reading is accomplished when /WE remains HIGH and /CE and output enable (/OE) are LOW.

For reliability, this SRAM module is designed as multiple power and ground pin. All module components may be powered from a single +5V DC power supply and all inputs and outputs are fully TTL-compatible

### **FEATURES**

### PIN ASSIGNMENT

| ◆ Part identificati        | on                         | Vss 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A18 37               |
|----------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| - HMS1M32M                 | 8S: SIMM design            | A3 2<br>A2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A16 38               |
| - HMS1M32Z                 | SS: ZIP design             | A1 4 A0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A6 40 Vcc 41         |
| Pin-Compatible w           | vith the HMS1M32M8S        | Vcc 6 A11 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A5 42 A4 43          |
| ◆ Access times : 1         | 10, 12, 15, 17 and 20ns    | /OE 8<br>A10 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vcc 44               |
| ◆ High-density 4N          | MByte design               | Vcc 10<br>/CE_LL2 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /CE_UM1 46 DQ23 47 D |
| ◆ High-reliability         | , high-speed design        | /CE_LL1 12 DQ7 13 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DQ16 48 DQ17 49 DQ17 |
| ◆ Single + 5V ±0           | .5V power supply           | DQ0 14 DQ1 15 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DQ18 50 DQ22 51      |
| • All inputs and o         | outputs are TTL-compatible | DQ2 16 DQ6 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DQ21 52 DQ20 53      |
| • FR4-PCB design           | gn                         | DQ5 18 DQ4 19 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DQ19 54<br>Vcc 55    |
| ◆ 72-Pin SIMM              | Design                     | DQ3 20 A15 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A14 56 A12 57        |
| <b>OPTIONS</b>             | MARKING                    | A17 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A7 58                |
| ◆ Timing                   |                            | A13 24 Vcc 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A8 60 A9 61          |
| 10ns access                | -10                        | DQ8 26 DQ9 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DQ24 62 DQ25 63 D    |
| 12ns access                | -12                        | DQ10 28<br>/CE_LM2 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DQ26 64              |
| 15ns access                | -15                        | Vcc 30 // CE_LM1 31 // CE_LM1 3 | DQ31 67 DQ30 68      |
| 17ns access                | -17                        | DQ15 32<br>DQ14 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DQ29 69 DQ28 70 D    |
| 20ns access                | -20                        | DQ13 34<br>DQ12 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DQ28 70              |
| <ul><li>Packages</li></ul> |                            | DQ11 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| 72-pin SIMM                | M                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SIMM<br>TOP VIEW     |

### FUNCTIONAL BLOCK DIAGRAM



### **TRUTH TABLE**

| MODE           | /OE | /CE | /WE | DQ     | POWER   |
|----------------|-----|-----|-----|--------|---------|
| STANDBY        | X   | Н   | X   | HIGH-Z | STANDBY |
| NOT SELECTED   | Н   | L   | Н   | HIGH-Z | ACTIVE  |
| READ           | L   | L   | Н   | Q      | ACTIVE  |
| WRITE or ERASE | X   | L   | L   | D      | ACTIVE  |

NOTE: X means don't care

### ABSOLUTE MAXIMUM RATINGS

| PARAMETER                             | SYMBOL           | RATING          |
|---------------------------------------|------------------|-----------------|
| Voltage on Any Pin Relative to Vss    | $V_{ m IN,OUT}$  | -0.5V to +7.0V  |
| Voltage on Vcc Supply Relative to Vss | $V_{CC}$         | -0.5V to +7.0V  |
| Power Dissipation                     | $P_{\mathrm{D}}$ | 8W              |
| Storage Temperature                   | $T_{ m STG}$     | -55°C to +125°C |
| Operating Temperature                 | $T_{A}$          | 0°C to +70°C    |

<sup>•</sup> Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

# RECOMMENDED DC OPERATING CONDITIONS $\,$ ( $T_A=0$ to 70 $^{\rm o}$ C )

| PARAMETER          | SYMBOL          | MIN   | TYP. | MAX        |
|--------------------|-----------------|-------|------|------------|
| Supply Voltage     | $V_{CC}$        | 4.5V  | 5.0V | 5.5V       |
| Ground             | $V_{SS}$        | 0     | 0    | 0          |
| Input High Voltage | $V_{ m IH}$     | 2.2   | -    | Vcc+0.5V** |
| Input Low Voltage  | V <sub>IL</sub> | -0.5* | -    | 0.8V       |

<sup>\*</sup>  $V_{IL}(Min.) = -2.0V$  (Pulse Width  $\leq 10$ ns) for  $I \leq 20$  mA

### DC AND OPERATING CHARACTERISTICS (1)

 $(0^{\rm O}{\rm C} \le {\rm T_A} \le 70~{\rm ^{\rm O}{\rm C}}$  ; Vcc = 5V  $\pm~0.5{\rm V}$  )

| PARAMETER              | TEST CONDITIONS                                                                           | SYMBO<br>L      | MIN | MAX | UNITS |
|------------------------|-------------------------------------------------------------------------------------------|-----------------|-----|-----|-------|
| Input Leakage Current  | $V_{IN} = Vss \text{ to } Vcc$                                                            | $IL_{I}$        | -2  | 2   | μΑ    |
| Output Leakage Current | $/CE=V_{IH \text{ or }}/OE=V_{IH} \text{ or }/WE=V_{IL}$ $V_{OUT}=Vss \text{ to } V_{CC}$ | $IL_0$          | -2  | 2   | μΑ    |
| Output High Voltage    | $I_{OH} = -4.0 \text{mA}$                                                                 | V <sub>OH</sub> | 2.4 | 1   | V     |
| Output Low Voltage     | $I_{OL} = 8.0 \text{mA}$                                                                  | V <sub>OL</sub> |     | 0.4 | V     |

<sup>\*</sup> Vcc=5.0V, Temp=25 °C

3

<sup>\*\*</sup>  $V_{IH}(Max.) = Vcc+2.0V$  (Pulse Width  $\leq 10ns$ ) for  $I \leq 20$  mA

# DC AND OPERATING CHARACTERISTICS (2)

|                                    |                                                                                                                          |                   |     | MAX |     |      |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------|-----|-----|-----|------|
| DESCRIPTION                        | TEST CONDITIONS                                                                                                          | SYMBOL            | -15 | -17 | -20 | UNIT |
| Power Supply<br>Current: Operating | Min. Cycle, 100% Duty /CE= $V_{IL}$ , $V_{IN}$ = $V_{IH}$ or $V_{IL}$ , $I_{OUT}$ =0mA                                   | $l_{CC}$          | 170 | 165 | 160 | mA   |
| Power Supply                       | Min. Cycle, /CE=V <sub>IH</sub>                                                                                          | $l_{\mathrm{SB}}$ | 50  | 50  | 50  | mA   |
| Current: Standby                   | f=0MHZ, /CE $\geq$ V <sub>CC</sub> -0.2V,<br>V <sub>IN</sub> $\geq$ V <sub>CC</sub> -0.2V or V <sub>IN</sub> $\leq$ 0.2V | $l_{SB1}$         | 10  | 10  | 10  | mA   |

### **CAPACITANCE**

| DESCRIPTION               | TEST CONDITIONS      | SYMBOL      | MAX | UNIT |
|---------------------------|----------------------|-------------|-----|------|
| Input /Output Capacitance | V <sub>I/O</sub> =0V | $C_{I\!/O}$ | 8   | pF   |
| Input Capacitance         | $V_{IN}=0V$          | $C_{IN}$    | 7   | pF   |

<sup>\*</sup> NOTE : Capacitance is sampled and not 100% tested

# $\textbf{AC CHARACTERISTICS} \ (0^{o}\text{C} \leq \text{T}_{A} \leq 70 \ ^{o}\text{C} \ ; \ \text{Vcc} = 5\text{V} \pm 0.5\text{V}, \ \text{unless otherwise specified})$

#### TEST CONDITIONS

| PARAMETER                                | VALUE     |  |  |
|------------------------------------------|-----------|--|--|
| Input Pulse Level                        | 0.V to 3V |  |  |
| Input Rise and Fall Time                 | 3ns       |  |  |
| Input and Output Timing Reference Levels | 1.5V      |  |  |
| Output Load                              | See below |  |  |



<sup>\*</sup> Including scope and jig capacitance

# **READ CYCLE**

|                                 |                   | -1  | -15 |     | -17 |     | -20 |      |
|---------------------------------|-------------------|-----|-----|-----|-----|-----|-----|------|
| PARAMETER                       | SYMBOL            | MIN | MAX | MIN | MAX | MIN | MAX | UNIT |
| Read Cycle Time                 | t <sub>RC</sub>   | 15  | -   | 17  | -   | 20  | -   | ns   |
| Address Access Time             | $t_{AA}$          | -   | 15  | •   | 17  | ı   | 20  | ns   |
| Chip Select to Output           | $t_{CO}$          | -   | 15  | •   | 17  | ı   | 20  | ns   |
| Output Enable to Output         | t <sub>OE</sub>   | ı   | 7   | -   | 8   | ı   | 9   | ns   |
| Output Enable to Low-Z Output   | t <sub>OLZ</sub>  | 0   | -   | 0   | İ   | 0   | -   | ns   |
| Chip Enable to Low-Z Output     | $t_{\mathrm{LZ}}$ | 3   | -   | 3   | ı   | 3   | -   | ns   |
| Output Disable to High-Z Output | t <sub>OHZ</sub>  | 0   | 7   | 0   | 8   | 0   | 9   | ns   |
| Chip Disable to High-Z Output   | t <sub>HZ</sub>   | 0   | 7   | 0   | 8   | 0   | 9   | ns   |
| Output Hold from Address Change | t <sub>OH</sub>   | 3   | -   | 3   | -   | 3   | -   | ns   |
| Chip Select to Power Up Time    | $t_{ m PU}$       | 0   | -   | 0   | 1   | 0   | -   | ns   |
| Chip Select to Power Down Time  | t <sub>PD</sub>   | -   | 15  | -   | 17  | -   | 20  | ns   |

# WRITE CYCLE

|                               |                   | -15 |     | -17 |     | -20 |     |      |
|-------------------------------|-------------------|-----|-----|-----|-----|-----|-----|------|
| PARAMETER                     | SYMBOL            | MIN | MAX | MIN | MAX | MIN | MAX | UNIT |
| Write Cycle Time              | $t_{ m WC}$       | 15  | -   | 17  | -   | 20  | -   | ns   |
| Chip Select to End of Write   | $t_{CW}$          | 12  | -   | 13  | -   | 14  | -   | ns   |
| Address Set-up Time           | t <sub>AS</sub>   | 0   | -   | 0   | -   | 0   | -   | ns   |
| Address Valid to End of Write | $t_{AW}$          | 12  | -   | 13  | -   | 14  | -   | ns   |
| Write Pulse Width (/OE=High)  | $t_{\mathrm{WP}}$ | 12  | -   | 13  | -   | 14  | -   | ns   |
| Write Recovery Time (/OE=Low) | $t_{ m WR}$       | 0   | -   | 0   | -   | 0   | -   | ns   |
| Write to Output High-Z        | $t_{ m WZ}$       | 0   | 7   | 0   | 8   | 0   | 9   | ns   |
| Data to Write Time Overlap    | $t_{\mathrm{DW}}$ | 8   | -   | 9   | -   | 10  | -   | ns   |
| Data Hold from Write Time     | t <sub>DH</sub>   | 0   | -   | 0   | -   | 0   | -   | ns   |
| End of Write to Output Low-Z  | t <sub>OW</sub>   | 3   | -   | 3   | -   | 3   | -   | ns   |

5

HANBit Electronics Co.,Ltd.

### **TIMING DIAGRAMS**



### TIMING WAVEFORM OF READ CYCLE (/WE = $V_{\rm IH}$ )



### Notes (Read Cycle)

- 1. /WE is high for read cycle.
- 2. All read cycle timing is referenced from the last valid address to first transition address.
- 3.  $t_{HZ}$  and  $t_{OHZ}$  are defined as the time at which the outputs achieve the open circuit condition and are not referenced to  $V_{OH}$  or  $V_{OL}$  levels.
- 4. At any given temperature and voltage condition,  $t_{HZ}$  (max.) is less than  $t_{LZ}$  (min.) both for a given device and from device to device.

6

#### TIMING WAVEFORM OF WRITE CYCLE (/WE Controlled)



#### TIMING WAVEFORM OF WRITE CYCLE ( /OE Low Fixed )



### **Notes**(Write Cycle)

- 1. All write cycle timing is referenced from the last valid address to the first transition address.
- 2. A write occurs during the overlap of a low /CE and a low /WE. A write begins at the latest transition among /CE going low and /WE going low: A write ends at the earliest transition among /CE going high and /WE going high.  $t_{WP}$  is measured from the beginning of write to the end of write.
- 3. t<sub>CW</sub> is measured from the later of /CE going low to the end of write.

- 4. t<sub>AS</sub> is measured from the address valid to the beginning of write.
- 5. t<sub>WR</sub> is measured from the end of write to the address change. t<sub>WR</sub> applied in case a write ends as /CE, or /WE going high.
- 6. If /OE,/CE and /WE are in the read mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- 8. If /CE goes low simultaneously with /WE going low or after /WE going low, the outputs remain high impedance state.
- 9.  $D_{\text{OUT}}$  is the read data of the new address.
- 10. When /CE is low: I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.

### **FUNCTIONAL DESCRIPTION**

| /CE | /WE | /OE | MODE           | I/O PIN                     | SUPPLY CURRENT    |
|-----|-----|-----|----------------|-----------------------------|-------------------|
| Н   | X*  | X   | Not Select     | High-Z                      | $I_{SB}, I_{SB1}$ |
| L   | Н   | Н   | Output Disable | High-Z                      | $I_{CC}$          |
| L   | Н   | L   | Read           | $\mathrm{D}_{\mathrm{OUT}}$ | $I_{CC}$          |
| L   | L   | X   | Write          | $D_{IN}$                    | $I_{CC}$          |

Note: X means Don't Care

### PACKAGING DIMMENSIONS

### **SIMM Design**





(Solder & Gold Plating Lead)

### ORDERING INFORMATION



1. - Product Line Identifier HANBit Technology ------ H 2. - Memory Modules 3. - **SRAM** 4. - Depth: 1M 5. - Width: x 32bit 6. - Package Code SIMM ----- M ----- Z 7. - Number of Memory Components---8, Customer----S 8. - Access time 10 ----- 10ns 12 ------ 12ns 15 ------ 15ns 17 ------ 17ns 20 ------ 20ns