Features

- Operating Voltage: $2.0 \mathrm{~V} \sim 5.5 \mathrm{~V}$
- Low standby current
- Low memory retention current: $0.1 \mu \mathrm{~A}$ (Typ.)
- Tone/Pulse switchable
- 32 (pulse)/31 (tone) digits for redialing
- Pause and $P \rightarrow T$ key for PBX
- 4×4 keyboard matrix
- 3.58 MHz crystal or ceramic resonator
- Hand-free control

General Description

The HT93214 are dialer series designed for low cost telephone set applications with expandable features such as Lock function, keytone and LCD display interface. With a 4×4 keyboard, it performs normal tone/pulse switchable dialing, and provides one-key redialing function with a 32 -digit memory for speed dial-
ing. An on-chip oscillator is built-in to work with an external 3.58 Mhz crystal or ceramic resonator for accurate timing. The HT93214 provides 300 ms (F1 key) and 600 ms (F2 key) of flash time; Tone dialing and 10pps, 20pps selection with $1 / 2 \mathrm{M} / \mathrm{B}$ ratio for pulse dialing.

Selection Table

HT93214 series

Function Part No.	Hand- Free	Key Tone	Flash	Flash Time (ms)	Pulse No.	Tone Duration (ms)	Inter Tone Pause (ms)	PPS	M/B	PKG DIP $\mathbf{3 0 0 m i l}$
HT93214A			Control	$300 / 600$	N	94	96	$10 / 20$	$1 / 2$	16
HT93214B	$\sqrt{ }$		Control	$300 / 600$	N	94	96	$10 / 20$	$1 / 2$	18
HT93214AT		$\sqrt{2}$	Control	$300 / 600$	N	94	96	$10 / 20$	$1 / 2$	18

Block Diagram

Pin Assignment

$$
\begin{aligned}
& \begin{array}{r}
\text { HKS } \square 1 \\
\text { MODE } \\
\text { M1 } \\
2
\end{array} \\
& \text { X1 } \\
& \text { X2 } \\
& 3
\end{aligned}
$$

Keyboard Information

Pin Description

Pin Name	1/O	Internal Connection	Description
$\begin{aligned} & \overline{\mathrm{C} 1} \sim \overline{\mathrm{C} 3} \\ & \overline{\mathrm{R} 1} \sim \overline{\mathrm{R} 4} \end{aligned}$	1/O	CMOS I/O	These pins along with the $\overline{\text { HKS }}$ form a 4×4 keyboard matrix which can perform keyboard input detection. When on-hook ($\overline{\mathrm{HKS}}=$ high) all the pins are set high. While off-hook the column group $(\overline{\mathrm{C} 1} \sim \overline{\mathrm{C} 3})$ is set low and the row group $(\overline{\mathrm{R} 1} \sim \overline{\mathrm{R} 4})$ remains high for input detection. Pressing a key connects a single row to a single column $\overline{\mathrm{HKS}}$ and actuates the system oscillator that results in a dialing signal output. If more than two keys are pressed at the same time, no response occurs. The key-in debounce time is 20 ms .
X1	1		
X2	0	OSC	tor to the X1 and X2 terminals can implement the oscillator function. The oscillator is turned off in the standby mode, and is actuated whenever a keyboard entry is detected.
$\overline{\text { XMUTE }}$	0	NMOS Open Drain	NMOS open drain structure pulled to VSS during dialing signal transmission. Otherwise, it is an open circuit. This pin is used to mute the speech circuit when transmitting the dial signal.
$\overline{\mathrm{HKS}}$	I	CMOS	This pin is used to monitor the status of the hook-switch and its combination with $\overline{\mathrm{HFI}}$ can control the $\overline{\mathrm{PO}}$ pin output to make or break the line. $\overline{\mathrm{HKS}}=\mathrm{VDD}$: On-hook state $(\overline{\mathrm{PO}}=l o w)$. Except for $\overline{\mathrm{HFI}}$ (hand-free control input), other functions are all disabled. $\overline{\mathrm{HKS}}=\mathrm{VSS}$: Off-hook state ($\overline{\mathrm{PO}}=$ high $)$. The chip is in the stand-by mode and ready to receive the key input.
$\overline{\mathrm{PO}}$	0	NMOS	NMOS open drain output structure, which by receiving the $\overline{\mathrm{HKS}}$ and HFO signals, control the dialer so as to connect or disconnect the telephone line. $\overline{\mathrm{PO}}$ is pulled to VSS when HKS is high (on-hook) and HFO is low. $\overline{\mathrm{PO}}$ is an open circuit which make the line connection when $\overline{\mathrm{HKS}}$ is low (off-hook) or HFO is high. During the off-hook state, this pin also outputs the dialing pulse train in pulse mode dialing. While in the tone mode, this pin is always an open circuit.
MODE	1/O	CMOS	This is a tri-state input/output pin, used for dialing mode selection, either Tone mode or Pulse mode, 10pps/20pps MODE=VDD: Pulse, $10 \mathrm{pps}, \mathrm{M} / \mathrm{B}=1 / 2$ MODE=Floating: Pulse, 20pps, M/B=1/2 MODE=VSS: Tone. The MODE selection is checked each time a key input is received.
DTMF	0	CMOS	This pin is active only when the chip transmits tone dialing signals. Otherwise, it always outputs a low. The pin outputs tone signals to drive the external transmitter amplifier circuit. The load resistor (to V_{SS}) should not be less than $5 \mathrm{k} \Omega$ and any DC load connected to $V_{D D}$ is not allowed.
$\overline{\mathrm{KT}}$	0	NMOS	NMOS open drain structure for keytone output. It outputs 34 ms of 600 Hz tone burst when any key is pressed in the pulse mode or when a function key is pressed in the tone mode.
$\overline{\mathrm{HFI}}$	I	CMOS	Pulled-high, this pin is a Schmitt trigger input structure. Active low. Applying a negative going pulse to HFI can toggle the HFO once and hence control the hand-free function. The pull-high resistance of $\overline{\mathrm{HFI}}$ is about $200 \mathrm{k} \Omega$ typ. An external RC network is recommended for input debouncing.
HFO	0	CMOS	The HFO pin is a CMOS output structure. Its output is toggle- controlled by a negative transition on $\overline{\mathrm{HFI}}$ pin. When HFO is high, the hand-free function is enabled and $\overline{\mathrm{PO}}$ outputs a high to connect the line. The hand-free function can be released by an on-off-hook operation or by another $\overline{\mathrm{HFl}}$ input. Refer to the functional description for the hand-free functional operation.
VDD	-	-	Positive power supply, 2.0V 5.5 V for normal operation
VSS	-	-	Negative power supply, ground
$\overline{\text { MODEO }}$	O	NMOS	NMOS open drain output pin pulled to VSS during tone output and is an open circuit during pulse output.

Approximate internal connection circuits

Absolute Maximum Ratings

Supply Voltage \qquad -0.3 V to 6 V

Storage Temperature \qquad .$-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Input Voltage \qquad $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$

Operating Temperature \qquad $-20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Electrical Characteristics
Fosc $=3.5795 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions			Min.	Typ.	Max.	Unit
		V ${ }_{\text {D }}$		onditions				
$V_{\text {DD }}$	Operating Voltage	-		-	2	-	5.5	V
$I_{\text {D }}$	Operating Current	2.5 V	Pulse	Off-hook Keypad entry	-	0.2	1	mA
			Tone		-	0.6	2	mA
IStB	Standby Current	1V	On-hook, no load No entry		-	-	1	$\mu \mathrm{A}$
V_{R}	Memory Retention Voltage	-		-	1	-	5	V
I_{R}	Memory Retention Current	1V	On-hook		-	0.1	0.2	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-	-		$\mathrm{V}_{\text {SS }}$	-	$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
V_{IH}	Input High Voltage	-	-		$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{\text {DD }}$	V
Іхмо	$\overline{\text { XMUTE Leakage Voltage }}$	-	$V_{\overline{\mathrm{XMUTE}}}=12 \mathrm{~V}$ No entry		-	-	1	$\mu \mathrm{A}$
lolxm	$\overline{\text { XMUTE Sink Current }}$	2.5 V	$V \overline{\text { XMUTE }}=0.5 \mathrm{~V}$		1	-	-	mA
IHKS	$\overline{\text { HKS Pin Input Current }}$	2.5 V	$V \overline{\mathrm{HKS}}=2.5 \mathrm{~V}$		-		0.1	$\mu \mathrm{A}$
$\mathrm{R}_{\text {HFI }}$	$\overline{\text { HFI Pull- High Resistance }}$	2.5 V	$\mathrm{V}_{\overline{\mathrm{HFI}}}=0 \mathrm{~V}$		-	200	-	k ת
IOH^{1}	Keypad Pin Source Current	2.5 V	$\mathrm{V}_{\mathrm{OH}}=0 \mathrm{~V}$		-4	-	-40	$\mu \mathrm{A}$
lol1	Keypad Pin Sink Current	2.5 V	$\mathrm{V}_{\mathrm{OL}}=2.5 \mathrm{~V}$		200	400	-	$\mu \mathrm{A}$
$\mathrm{lOH2}$	HFO Pin Source Current	2.5 V	$\mathrm{V}_{\mathrm{OH}}=2 \mathrm{~V}$		-1	-	-	mA
lol2	HFO Pin Sink Current	2.5 V	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$		1	-	-	mA
loL3	$\overline{\text { MODEO Sink Current }}$	2.5 V	$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$		0.6	3.5	-	mA

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		V_{DD}	Conditions				
$\mathrm{T}_{\text {FP }}$	Pause Time After Flash	2.5 V	-	-	800	-	ms
T_{RP}	One-key Redialing Pause Time	2.5 V	-	-	800	-	ms
Fosc	System Frequency	-	-	-	3.58	-	MHz
T_{DB}	Key-in Debounce Time	2.5 V	-	-	20	-	ms
TBRK	Break Time For One-key Redialing	2.5 V	-	-	2.2	-	s
THKDL	Off-hook Delay Time	2.5 V	10pps	-	800	-	ms
			20pps	-	500	-	

Pulse Mode Electrical Characteristics
Fosc $=3.5795 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		V_{DD}	Conditions				
IPOH	$\overline{\text { PO Output Source Current }}$	2.5 V	$\mathrm{V}_{\mathrm{OH}}=2 \mathrm{~V}$	-0.2	-	-	mA
IpoL	$\overline{\text { PO Output Sink Current }}$	2.5 V	$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$	0.2	0.6	-	mA
Pr_{R}	Pulse Rate	-	MODE pin is connected to $V_{D D}$	-	10	-	pps
			MODE pin is opened	-	20	-	
M/B	Make/Break Ratio	-	-	-	33:66	-	\%
TPDP	Pre-digit-pause Time	-	M/B=33:66 (10 pps)	-	33	-	ms
			M/B=33:66 (20 pps)	-	17	-	
TIDP	Inter-digit-pause Time	-	10 pps	-	800	-	ms
			20 pps	-	500	-	
T_{M}	Pulse Make Duration	-	$10 \mathrm{pps}, \mathrm{M} / \mathrm{B}=1 / 2$	-	33.3	-	ms
			$20 \mathrm{pps}, \mathrm{M} / \mathrm{B}=1 / 2$	-	16.7	-	
T_{B}	Pulse Break Duration	-	$10 \mathrm{pps}, \mathrm{M} / \mathrm{B}=1 / 2$	-	66.6	-	ms
			$20 \mathrm{pps}, \mathrm{M} / \mathrm{B}=1 / 2$	-	33.3	-	
T_{P}	Pause Time	-	-	-	2.2	-	s

Tone Mode Electrical Characteristics
Fosc $=3.5795 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		$\mathrm{V}_{\text {DD }}$	Conditions				
$\mathrm{V}_{\text {TDC }}$	DTMF Output DC Level	-	No load	$0.45 \mathrm{~V}_{\text {DD }}$	-	$0.7 \mathrm{~V}_{\mathrm{DD}}$	V
$I_{\text {TOL }}$	DTMF Sink Current	2.5 V	$\mathrm{V}_{\text {DTMF }}=0.5 \mathrm{~V}$	0.1	-	-	mA
$\mathrm{V}_{\text {TAC }}$	DTMF Output AC Level	-	Row group, $\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	0.12	0.155	0.18	Vrms
R_{L}	DTMF Output Load	2.5 V	THD $\leq-23 \mathrm{~dB}$	5	-	-	k Ω
$\mathrm{A}_{\text {CR }}$	Column Pre-emphasis	2.5 V	Row group=0dB	1	2	3	dB
THD	Tone Signal Distortion	2.5 V	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	-	-30	-23	dB
$\mathrm{T}_{\text {TMIN }}$	Minimum Tone Duration	-	Auto-redial	-	94	-	ms
$\mathrm{T}_{\text {ITPM }}$	Minimum Inter-Tone Pause	-	Auto-redial	-	96	-	ms

THD (Distortion) $(\mathrm{dB})=20 \log \left(\sqrt{\mathrm{~V} 1^{2}+\mathrm{V}^{2}+\ldots .+\mathrm{Vn}^{2}} / \sqrt{\mathrm{Vi}^{2}+\mathrm{Vh}^{2}}\right)$
Vi, Vh : Row group and column group signals
V1, V2, ... Vn: Harmonic signals (BW=300Hz~3500Hz)

Functional Description

Keyboard matrix

$\overline{\mathrm{C} 1} \sim \overline{\mathrm{C} 3}, \overline{\mathrm{HKS}}$ and $\overline{\mathrm{R} 1} \sim \overline{\mathrm{R} 4}$ form a keyboard matrix. Together with a standard 4×4 keyboard, the keyboard matrix is used for dialing entries. The keyboard arrangement of the HT93214 series is shown in the Keyboard Information.

Tone frequency

Tone Name	Output Frequency (Hz)		$\%$ Error
	Specified	Actual	
$\overline{\mathrm{R} 1}$	697	699	$+0.29 \%$
$\overline{\mathrm{R} 2}$	770	766	-0.52%
$\overline{\mathrm{R} 3}$	852	847	-0.59%
$\overline{\mathrm{R} 4}$	941	948	$+0.74 \%$
$\overline{\mathrm{C} 1}$	1209	1215	$+0.50 \%$
$\overline{\mathrm{C} 2}$	1336	1332	-0.30%
$\overline{\mathrm{C} 3}$	1477	1472	-0.34%

Note: \% Error does not contain the crystal frequency drift

Dialing specification selection

- The specifications are selected by the MODE pin

MODE	Tone/Pulse	Dial Rate	M/B Ratio
VDD	Pulse	10 pps	$1 / 2$
VSS	Tone	-	-
Floating	Pulse	20 pps	$1 / 2$

- The MODE pin status is checked whenever a digit key is pressed, however the M/B and pulse rate are determined at the first key entry.

Hand-free function operation

- When HFO is low, a falling edge triggers the $\overline{\mathrm{HFI}}$, enabling the Hand-free function (HFO becomes high)
- Reset Hand-free function

When HFO is high, the Hand-free function is enabled and can be reset by:

- Off-hook
- Applying a falling edge to HFI
- Hand-free function table

Current State		Next State		
Hook SW	HFO	Input	HFO	Dialing?
-	Low	$\overline{\text { HFI }} \downarrow$	High	Yes
On-hook	High	$\overline{\text { HFI }} \downarrow$	Low	No
Off-hook	High	$\overline{\text { HFI }} \downarrow$	Low	Yes
On-hook	-	of off-hook	Low	Yes
Off-hook	Low	on-hook	Low	No
Off-hook	High	on-hook	High	Yes

Flash

Two flash keys are provided, namely F1, F2 for both series. All the flash key function as control key with different break duration. Whenever a flash key is pressed the $\overline{\mathrm{PO}}$ pin will be forced low for a T_{F} duration and the transmission of the new digit key inputs will be further delayed for a $T_{F P}$ after T_{F}. See the following table for flash duration selection

Item	F1	F2
HT93214	300 ms	600 ms

Key definition

- 0,1,2,3,4,5,6,7,8,9 keys

These are dialing number input keys for both the pulse mode and the tone mode operation.

- */T

This key executes the $P \rightarrow T$ function and waits a $T_{P \rightarrow T}$ duration in the pulse mode. On the other hand, the $* / T$ key executes the $*$ function in the tone mode. The $* / T$ key will occupy one memory digit in either tone or pulse mode.

- \#

This is a dialing signal key for the tone mode only, no response in the pulse mode.

- F1, F2

Pressing one of the flash keys will force the $\overline{\mathrm{PO}}$ pin to become low for the T_{F} duration. To transmit the dia signals of the key input that are entered after the F key, a wait period T_{FP} (sec) after $\overline{\mathrm{PO}}$ pin returns from low is provided.

- P

Pause key. The execution of this key pauses the output for the T_{P} duration (2.2s).

- R Redial key. It executes redialing as well as one-key redial function

Keyboard Operation

The following operations are described under an on-off- hook or on-hook condition with the hand-free active condition.

- Normal dialing
- Pulse mode
(a) without */T

Keyboard input: D1 D2 ... Dn
Dialing output: D1 D2 ... Dn
RM: D1 D2 ... Dn
(b) with $* / T$

Keyboard input: D1 D2 ... Dn ${ }^{* / T}$ Dn+1 ...
Dm
Dialing output: $\underbrace{\mathrm{D}_{2} \mathrm{D} 2 \ldots \mathrm{Dn}}_{\text {Pulse }} \mathrm{TP} \rightarrow \mathrm{T} \quad \underbrace{\mathrm{D}+\ldots \mathrm{Dm}}_{\text {Tone }}$
RM: D1 D2 ... Dn */T Dn+1 ... Dm

- Tone mode
(a) without */T

Keyboard input: D1 D2 ... Dn
Dialing output: D1 D2 ... Dn
RM: D1 D2 ... Dn
(b) with $* / T$

Keyboard input: D1 D2, ‥ Dn ${ }^{\star / T}$ Dn+1 ...
Dm
Dialing output: D1 D2 ... Dn * Dn+1 ... Dm
RM: D1 D2 ... Dn * Dn+1 ... Dm

Note: The maximum capacity of the RM memory is 32 digits. When more than 32 digits are entered, the signal is transmitted but the redial function is inhibited.

- Redial

- Pulse mode
(a) without $* / T$

RM content: D1 D2 ... Dn
Keyboard input: R
Dialing output: D1 D2 ... Dn
RM: Unchanged
(b) with */T

RM content: D1 D2 ... Dn */T Dn+1 ... Dm
Keyboard input: R
Dialing output: $\underbrace{\text { 1 D2 } \ldots \text { Dn }}_{\text {Pulse }} T_{P \rightarrow T} \underbrace{\text { Dn+1 } \ldots \mathrm{Dm}}_{\text {Tone }}$
RM: Unchanged

- Tone mode
(a) without */T

RM content: D1 D2 ... Dn
Keyboard input: R
Dialing output: D1 D2 ... Dn
RM: Unchanged
(b) with */T

RM content: D1 D2 ... Dn */T Dn+1 ... Dm
Keyboard input: R
Dialing output: D1 D2 ... Dn * Dn+1 ... Dm
RM: Unchanged

- One-key redial
- Pulse mode
(a) without */T

Keyboard input: D1 D2 ... Dn R
Dialing output: D1 D2 ... Dn Tbrk TRP D1 D2 ... Dn
RM: D1 D2 ... Dn
(b) with */T

Keyboard input: D1 D2 ... Dn */T Dn+1 ...

| Dm | R |
| :--- | :--- | :--- |

Dialing output: $\underbrace{\mathrm{D} 1 \mathrm{D} 2 \ldots \mathrm{Dn}}_{\text {Pulse }} \mathrm{TP} \rightarrow \mathrm{T} \underbrace{\mathrm{Dn+1} \ldots \mathrm{Dm}}_{\text {Tone }}$ Tbrk Trp D $\underbrace{1 \text { D2 } \ldots \text { Dn }}_{\text {Pulse }} \mathrm{TP}_{\mathrm{P} \rightarrow \mathrm{T}}$
$\mathrm{Dn+1} \underbrace{\mathrm{n} . . \mathrm{Dm}}_{\text {Tone }}$
RM: D1 D2 ... Dn */T Dn+1 ... Dm

- Tone mode
(a) without */T

Keyboard input: D1 D2 ... Dn R
Dialing output: D1 D2 ... Dn Tbrk Trp D1 D2
... Dn
RM: D1 D2 ... Dn
(b) with */T

Keyboard input: D1 D2 ... Dn */T Dn+1 ...
Dm, R
Dialing output: D1 D2 ... Dn * Dn+1 ... Dm
Tbrk TRp D1 D2 ... Dn * Dn+1
... Dm
RM: D1 D2 ... Dn * Dn+1 ... Dm

Note: If the dialing number exceeds 32 digits, redialing is inhibited and $\overline{\mathrm{PO}}=o$ open

- Flash
- Flash as a control key Keyboard input: D1 D2 ... Dn F Dn+1 ... Dm
Dialing output: D1 D2 ... Dn Tf Tfp Dn+1... Dm
RM: Dn+1 ... Dm
Note: TF: break a flash time
- Pause

Keyboard input: D1 D2 ... Dn PD Dn+1 ... Dm
Dialing output: D1 D2 ... Dn Tp Dn+1 ... Dm
RM: D1 D2 ... Dn P Dn+1 ... Dm

- Note

RM: Redial memory
D1 D2 ... Dn: 0~9
Dn+1 ... Dm: 0~9, * \#

Timing Diagrams

Normal dialing

- Pulse mode

- Tone mode

Dialing with PAUSE key

- Pulse mode

- Tone mode

- Flash key operation

- Pulse to Tone operation

$\overline{\text { MODEO }}$
- One key redial operation

Application Circuits

Package Information

16-pin DIP (300 mil) outline dimensions

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	745	-	775
B	240	-	260
C	125	-	135
D	125	-	145
E	16	-	20
F	50	-	70
G	-	100	-
H	295	-	315
α	335	-	375
0°	-	15°	

18-pin DIP (300mil) outline dimensions

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	895	-	915
B	240	-	260
C	125	-	135
D	125	-	145
E	16	-	20
F	50	-	70
G	-	100	-
I	295	-	315
α	335	-	375
0°	-	15°	

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science-based Industrial Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw
Holtek Semiconductor Inc. (Sales Office)
11F, No.576, Sec. 7 Chung Hsiao E. Rd., Taipei, Taiwan
Tel: 886-2-2782-9635
Fax: 886-2-2782-9636
Fax: 886-2-2782-7128 (International sales hotline)
Holtek Semiconductor (Shanghai) Inc.
7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China
Tel: 021-6485-5560
Fax: 021-6485-0313
http://www.holtek.com.cn
Holtek Semiconductor (Hong Kong) Ltd.
RM.711, Tower 2, Cheung Sha Wan Plaza, 833 Cheung Sha Wan Rd., Kowloon, Hong Kong
Tel: 852-2-745-8288
Fax: 852-2-742-8657
Holmate Semiconductor, Inc.
48531 Warm Springs Boulevard, Suite 413, Fremont, CA 94539
Tel: 510-252-9880
Fax: 510-252-9885
http://www.holmate.com

Copyright © 2002 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

