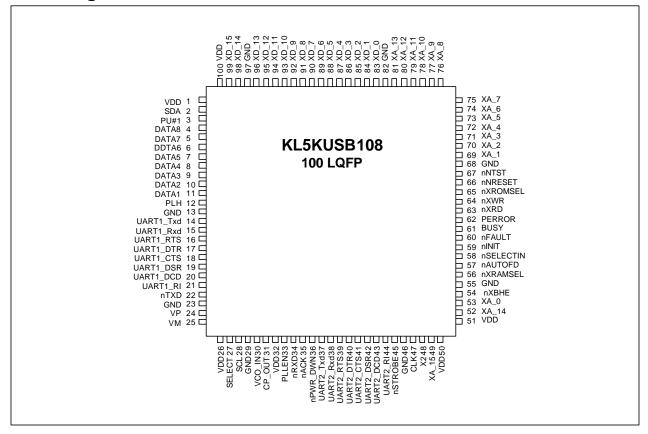

Description

The Kawasaki USB to 2 Serial / 1 Parallel enables your system to have the capability to communicate between the USB (Universal Serial Bus) port and 2 serial ports and 1 parallel port. This device meets the USB 1.0/1.1 and IEEE1284 specifications. All the advantages of USB are available to peripherals with parallel and serial port interface. With Kawasaki's USB to 2 Serial / 1 Parallel device and software, it is transparent to the peripheral and no firmware changes are required which makes it possible to convert peripherals with serial and parallel interfaces to USB interface with minimum modifications. This device is ideal for legacy compatibility solutions.

Features


- Advanced 16 Bit processor for USB transaction processing and control data processing
- Compliant with the USB 1.0/1.1 (Universal Serial Bus)
- Plug and Play compatible
- Compliant with USB printer device class specification
- IEEE1284 compliant including EPP and ECP modes
- PC parallel port register-based standard operation
- 5V tolerate Centronics inputs pins.

- 2 serial ports
- 230kbps baud rate
- 128 byte FIFO
- Serial EEPROM interface
- Utilizes low cost external crystal circuitry
- 8K x 16 internal RAM buffer for fast communications
- Debug UART for debug and code development
- USB host device drivers available
- Single-chip solution in a 100 pin LQFP
- Multiple logical channels support

Pin Diagram 100LQFP

Pin Description

Pin # LQFP	I/O	Pin Name	Description			
1		VDD	VDD			
2	IN/OUT	SDA*	Serial EEPROM serial data. Connect to EEPROM/SDA for <=16kb EEPROM, and EEPROM/SCL for >16kb EEPROM.			
3	IN	PU#1*	Pull up termination for USB DATA+ for High Speed			
4	IN/OUT	DATA8*	Parallel port: Data8			
5	IN/OUT	DATA7*	Parallel port: Data7			
6	IN/OUT	DATA6*	Parallel port: Data6			
7	IN/OUT	DATA5*	Parallel port: Data5			
8	IN/OUT	DATA4*	Parallel port: Data4			
9	IN/OUT	DATA3*	Parallel port: Data3			
10	IN/OUT	DATA2*	Parallel port: Data2			
11	IN/OUT	DATA1*	Parallel port: Data1			
12	IN	PLH*	Parallel port: Peripheral Logic High			
13		GND	GND			
14	OUT	UART1_Txd*	UART1: Transmit Data			
15	IN	UART1_Rxd*	UART1: Receive Data			
16	OUT	UART1_RTS*	UART1: Request To Send			
17	OUT	UART1_DTR*	UART1: Data Terminal Ready			
18	IN	UART1_CTS*	UART1: Clear To Send			
19	IN	UART1_DSR*	UART1: Data Set Ready			
20	IN	UART1_DCD*	UART1: Data Carrier Detect			
21	IN	UART1_RI*	UART1: Ring Indicate			
22	OUT	nTXD	Debug UART Txd			
23	IN LOUIT	GND	USB GND			
24	IN/OUT	VP	USB DATA+ Pin			
25	IN/OUT	VM	USB DATA- Pin			
26	INI	VDD SELECT*	USB VDD			
27 28	IN OUT	SELECT* SCL*	Parallel port: Printer is selected and online Serial EEPROM clock. Connect to EEPROM/SCL for			
		ONE	<=16kb EEPROM and EEPROM/SDA for >16kb EEPROM			
29	15.1	GND	GND			
30	IN	VCO_IN	PLL VCO In			
31	OUT	CP_OUT	PLL VCO Out			
32 33	INI	VDD PLLEN*	VDD PLL Enable			
	IN					
34	IN	NRXD*	Debug UART Rxd			
35	IN	nACK*	Parallel port: Acknowledge			
36 37	OUT OUT	nPWR_DWN	Power down			
38	IN	UART2_Txd*	UART2: Transmit Data			
39	OUT	UART2_Rxd* UART2_RTS*	UART2: Receive Data			
40	OUT	UART2_DTR*	UART2: Request To Send			
41	IN	UART2_CTS*	UART2: Data Terminal Ready UART2: Clear To Send			
42	IN	UART2_DSR*	UART2: Clear to Send UART2: Data Set Ready			
43	IN	UART2_DCD*	UART2: Data Set Ready UART2: Data Carrier Detect			
43	IIN	UAN 12_DCD	UAINTZ. Data Cattlet Detect			

Pin # LQFP	I/O	Pin Name	Description			
44	IN	UART2 RI*	UART2: Ring Indicate			
45	IN/OUT	nSTROBE	Parallel port: Strobe			
46		GND	GND			
47	IN	CLK	12MHz Clock/Crystal Input			
48	OUT	X2	12MHz Crystal Output			
49	OUT	XA_15	External Memory Address Pin			
50		VDD	VDD			
51		VDD	VDD			
52	OUT	XA_14	External Memory Address Pin			
53	OUT	XA_0	External Memory Address Pin			
54	OUT	nXBHE	External Memory byte High Enable (Active low)			
55		GND	GND			
56	OUT	nXRAMSEL	External RAM CS (Active low)			
57	OUT	nAUTOFD*	Parallel port: Auto feed			
58	OUT	nSELECTIN*	Parallel port: Select			
59	OUT	nINIT*	Parallel port: Initialize			
60	IN	nFAULT*	Parallel port: Error			
61	IN	BUSY*	Parallel port: Busy			
62	IN	PERROR*	Parallel port: Paper path error			
63	OUT	nXRD	External Memory Read (Active low)			
64	OUT	nXWR	External Memory Write (Active low)			
65	OUT	nXROMSEL	External ROM CS (Active low)			
66	IN	nNRESET	Reset Pin			
67	IN	nNTST*	Test Pin, Disconnect for Normal Operation			
68		GND	GND			
69	OUT	XA_1	External Memory Address Pin			
70	OUT	XA_2	External Memory Address Pin			
71	OUT	XA_3	External Memory Address Pin			
72	OUT	XA_4	External Memory Address Pin			
73	OUT	XA_5	External Memory Address Pin			
74	OUT	XA_6	External Memory Address Pin			
75	OUT	XA_7	External Memory Address Pin			
76	OUT	XA_8	External Memory Address Pin			
77	OUT	XA_9	External Memory Address Pin			
78	OUT	XA_10	External Memory Address Pin			
79	OUT	XA_11	External Memory Address Pin			
80	OUT	XA_12	External Memory Address Pin			
81	OUT	XA_13	External Memory Address Pin			
82		GND	GND			
83	IN/OUT	XD_0*	External Memory Data Pin			
84	IN/OUT	XD_1*	External Memory Data Pin			
85	IN/OUT	XD_2*	External Memory Data Pin			
86	IN/OUT	XD_3*	External Memory Data Pin			
87	IN/OUT	XD_4*	External Memory Data Pin			
88	IN/OUT	XD_5*	External Memory Data Pin			
89	IN/OUT	XD_6*	External Memory Data Pin			
90	IN/OUT	XD_7*	External Memory Data Pin			
91	IN/OUT	XD_8*	External Memory Data Pin			
92	IN/OUT	XD_9*	External Memory Data Pin			

Pin # LQFP	I/O	Pin Name	Description
93	IN/OUT	XD_10*	External Memory Data Pin
94	IN/OUT	XD_11*	External Memory Data Pin
95	IN/OUT	XD_12*	External Memory Data Pin
96	IN/OUT	XD_13*	External Memory Data Pin
97		GND	GND
98	IN/OUT	XD_14*	External Memory Data Pin
99	IN/OUT	XD_15*	External Memory Data Pin
100		VDD	VDD

Note 1: Pins with * are 5V tolerant.

Note 2: If application does not require some pins, then tie all unused imput pins to GND and make all unused output and bi-directional pins open.

Function Description

16 Bit Processor

The integrated 16-bit processor serves as a micro controller for USB peripherals. The processor can execute approximately five million instructions per second. With this processing power it allows the design of intelligent peripherals that can process data prior to passing it on to the host PC, thus improving overall performance of the system. The masked ROM in the this device or external memory contains a specialized instruction set that has been designed for highly efficient coding of processing algorithms and USB transaction processing.

The 16-bit processor is designed for efficient data execution by having direct access to the RAM buffer, external memory, I/O interfaces, and all the control and status registers

The processor supports prioritized vectored hardware interrupts and has as many as 240 software interrupt vectors.

The processor provides six addressing modes, supporting memory-to-memory, memory-to-register, register-to-register, immediate-to-register or immediate-to-memory operations. Register, direct, immediate, indirect, and indirect indexed addressing modes are supported. In addition, there is an auto-increment mode in which a register, used as an address pointer is automatically incremented after each use, making repetitive operations more efficient both from a programming and a performance standpoint.

The processor features a full set of program control, logical, and integer arithmetic instructions. All instructions are sixteen bits wide, although some instructions require operands, which may occupy another one or two words. Several special "short immediate" instructions are available, so that certain frequently used operations with small constant operand will fit into a 16-bit instruction.

The Processor – Divide/Multiply function

The processor's divide/multiply function contains all the instructions of the base processor that additionally includes integer divide and multiply instructions. A signed multiply instruction takes

KL5KUSB108

USB to 2 Serial / 1 Parallel

two 16-bit operands and returns a 32-bit result. A signed divide instruction divides a 32-bit operand by a 16-bit operand.

RAM Buffer

The USB controller contains internal buffer memory. The memory is used to buffer data and USB packets and accessed by the 16-bit processor and the SIE. USB transactions are automatically routed to the memory buffer. The 16-bit processor has the ability to set up pointers and block sizes in buffer memory for USB transactions. Data is read from the interface and is processed and packetized by the 16-bit I/O processor.

PLL Clock Generator

The PLL circuitry is provided to generate the internal 48MHz clock. This circuitry is designed to allow use of a low cost 12 MHz external crystal which is connected to CLK and X2. If an external 12 MHz clock is available in the application, it may be used in lieu of the crystal circuit and connected directly to the CLK input pin.

USB Interface

The USB controller meets the Universal Serial Bus (USB) specification ver 1.0/1.1. The transceiver is capable of transmitting and receiving serial data at the USB's full speed, 12 Mbits/sec data rate. The driver portion of the transceiver is differential, while the receive section is comprised of a differential receiver and two single ended receivers. Internally, the transceiver interfaces to the SIE logic. Externally, the transceiver connects to the physical layer of the USB.

Debug UART

An independent UART serial port is provided for debug and code development. The port can be configured for a wide selection of baud rates, 7200 to 115.2K baud. The port provides transmit and receive data support only.

Serial EEPROM Support

The USB Controller serial interface is used to provide access to external EEPROM's. The interface can support a variety of serial EEPROM formats.

Electrical Characteristics

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings	Unit
Supply Voltage	V_{DD}	-0.3 to 4.0	V
Input Voltage	V _{IN} (Normal)	-0.3 to V _{DD} +0.3	V
	V _{IN} (5V Tolerant)	-0.3 to 6.0	V
Storage Temperature	TSTG	-55 to 125	°C

DC Characteristics and conditions (V_{DD} @ 3.3V±.3V)

Symbol	Parameter	Condition	Value			Unit
			Min	Тур	Max	
V_{DD}	Supply Voltage		3.0	3.3	3.6	V
V _{IH}	Input high voltage		2.0	-	-	V
V _{IL}	Input low voltage		-	-	0.8	V
V+ *	Input high voltage	Schmitt	-	1.8	2.3	V
V- *	Input low voltage	Schmitt	0.5	0.9	-	V
V _H *	Hysterisis voltage	Schmitt	0.4	-	-	V
I _{IH}	Input high current	$V_{IN} = V_{DD}$	-10	-	10	μΑ
IL	Input low current	$V_{IN} = V_{ss}$	-10	-	10	μΑ
V _{OH}	Output high voltage		2.4	-	-	V
V _{OL}	Output low voltage		-	-	0.4	V
I _{OZ}	3-state leakage current	V _{OH} =V _{SS}	-10	-	10	μΑ
		$V_{OL}=V_{DD}$	-10	-	-10	μA

^{*}For reset pin (nNRESET, pin 66)

Kawasaki LSI assumes no responsibility or liability for (1) any errors or inaccuracies contained in the information herein and (2) the use of the information or a portion thereof in any application, including any claim for (a) copyright or patent infringement or (b) direct, indirect, special or consequential damages. There are no warranties extended or granted by this document. The information herein is subject to change without notice form Kawasaki LSI

October 31 • ©Copyright 2001 • Kawasaki LSI • Printed in U.S.A