SFP Copper-Cable Preemphasis Driver

General Description
The MAX3982 is a single-channel, copper-cable preemphasis driver that operates from 1Gbps to 4.25 Gbps . It provides compensation for copper links, such as 4.25Gbps Fibre Channel, allowing spans of up to 15 m with 24AWG. The cable driver provides four selectable preemphasis levels. The input compensates for up to 10in of FR4 circuit board material at 4.25Gbps.
The MAX3982 also features SFP-compliant loss-of-signal detection with selectable sensitivity and TX_DISABLE. Selectable output swing reduces EMI and power consumption. It is packaged in a $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, 16 -pin thin QFN and operates from $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.
\section*{Applications}
SFP Active Copper-Cable Assemblies
Backplanes
1.0625Gbps, 2.125Gbps, and 4.25Gbps Fibre
Channel
1.25Gbps Ethernet
2.488Gbps STM16
InfiniBand
PCI Express

Features

- Drives Up to 15 m with 24AWG Cable
- Drives Up to 30in of FR4
- 0.25W Total Power with +3.3V Supply
- Selectable 1600mVP-p or 1200mVp-p Differential Output Swing
- Selectable Output Preemphasis
- Fixed Input Equalization
- Loss-of-Signal Detection with Selectable Sensitivity
- Transmit Disable

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX3982UTE	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Thin QFN	$\mathrm{T} 1633-4$

Pin Configuration appears at end of data sheet.

Typical Application Circuit

SFP Copper-Cable Preemphasis Driver

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, Vcc
-0.5 V to +6.0 V
Continuous CML Output Current at OUT+, OUT-
..................-25mA to $+25 m A$
Voltage at $\operatorname{IN}+$, IN-, LOSLEV, LOS,
TX_DISABLE, PE0, PE1, OUTLEV \qquad .-0.5 V to $(\mathrm{V} C \mathrm{C}+0.5 \mathrm{~V})$

LOS Open Collector Supply Voltage with $\geq 4.7 \mathrm{k} \Omega$ Pullup Resistor \qquad-0.5V to +5.5 V Continuous Power Dissipation at $+85^{\circ} \mathrm{C}$ (derate $20.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+85^{\circ} \mathrm{C}$). 1.35W Operating Junction Temperature Range (T_{J}) $\ldots .-55 \mathrm{C}^{\circ}$ to $+150^{\circ} \mathrm{C}$ Storage Ambient Temperature Range (TS)-55C ${ }^{\circ}$ to $+150^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current		TX_DISABLE=low		75	97	mA
Inrush Current		Current beyond steady-state current			10	mA
Power-On-Reset Delay	tPOR		1		40	ms
OPERATING CONDITIONS						
Supply Voltage	VCC		3.0	3.3	3.6	V
Supply-Noise Tolerance		$1 \mathrm{MHz} \leq \mathrm{f}<2 \mathrm{GHz}$		40		$m V_{P-P}$
Operating Ambient Temperature	$\mathrm{T}_{\text {A }}$		0	25	85	${ }^{\circ} \mathrm{C}$
Bit Rate		NRZ data (Note 1)	1.0		4.25	Gbps
CID		Consecutive identical digits (bits) (Note 1)			10	Bits
CONTROL INPUTS: TX_DISABLE, PE0, PE1, OUTLEV, LOSLEV						
Voltage, Logic High	V_{IH}		2.0			V
Voltage, Logic Low	VIL				0.8	V
Current, Logic High	$\mathrm{IIH}^{\text {I }}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$			-150	$\mu \mathrm{A}$
Current, Logic Low	IIL	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$			350	$\mu \mathrm{A}$
STATUS OUTPUT: LOS						
LOS Open Collector Current Sink		LOS asserted	0		25	$\mu \mathrm{A}$
		LOS unasserted, $\mathrm{V}_{\mathrm{OL}} \leq 0.4 \mathrm{~V}$ with $4.7 \mathrm{k} \Omega$ pullup resistor, pullup supply $=5.5 \mathrm{~V}$	1.0			mA
		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$, pullup supply $=5.5 \mathrm{~V}$, external pullup resistor $\geq 4.7 \mathrm{k} \Omega$	0		25	$\mu \mathrm{A}$
LOS Assert Level		LOSLEV = high (Note 1)	100			$m V_{P-P}$
		LOSLEV = low (Note 1)	50			mVP-P
LOS Deassert Level		LOSLEV = high (Note 1)			300	$m V_{P-P}$
		LOSLEV = low (Note 1)			120	mVP-P
LOS Hysteresis		LOSLEV = high (Note 1)	20			$m V_{\text {P-P }}$
		LOSLEV = low (Note 1)		4		$m V_{\text {P-P }}$
LOS Response Time		Time from IN dropping below assert level, or rising above deassert level to 50% point of LOS			10	$\mu \mathrm{S}$
LOS Transition Time		Rise-time or fall-time (10% to 90%), external pullup resistor $=4.7 \mathrm{k} \Omega$		250		ns

SFP Copper-Cable Preemphasis Driver

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$, unless otherwise noted.)

Note 1: Guaranteed by design and characterization.
Note 2: PE1 = PE0 $=1$ for maximum preemphasis, load is $50 \Omega \pm 1 \%$ at each side, and the pattern is 0000011111 at 1 Gbps.
Note 3: Measured at point B in Figure 2 using 0000011111 at 1 Gbps . PE1 $=\mathrm{PE} 0=0$ for minimum preemphasis. For transition time, the 0% reference level is the steady-state level after four zeros, just before the transition. The 100% reference level is the maximum voltage of the transition.
Note 4: Tested with CJTPAT, as well as this pattern: 19 zeros, 1,10 zeros, 1010101010 (D21.5 character), 1100000101 (K28.5+ character), 19 ones, 0,10 ones, 0101010101 (D10.2 character), 0011111010 (K28.5 character).
Note 5: Cables are unequalized, Amphenol Spectra-Strip 24AWG. Residual deterministic jitter is the difference between the source jitter at point A, and load jitter at point D in Figure 2. The deterministic jitter at the output of the transmission line must be from media-induced loss and not from clock-source modulation.

SFP Copper-Cable Preemphasis Driver

Figure 1. Illustration of Tx Preemphasis in $d B$

Figure 2. Test Setup. The points labeled A, B, and D are referenced for AC parameter test conditions. Deterministic jitter and eye diagrams measured at point D.

SFP Copper-Cable Preemphasis Driver

Figure 3. End-to-End Test Setup Using the MAX3748 as a Receiver. Deterministic jitter and eye diagrams measured at point D.
$\left(\mathrm{V}_{C C}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $\mathrm{PRBS} 7+100 \mathrm{CID}$ pattern is $\mathrm{PRBS} 2^{7}, 100$ zeros, 1010, PRBS $2^{7}, 100$ ones, 0101. $)$

SFP Copper-Cable Preemphasis Driver

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $\mathrm{PRBS} 7+100 \mathrm{CID}$ pattern is PRBS $2^{7}, 100$ zeros, 1010, PRBS $2^{7}, 100$ ones, 0101.)

4.25Gbps PRBS7 + 100CID PATTERN, Oin FR4 AT INPUT, USING MAX3748 AS RECEIVER, AS SHOWN IN FIGURE 3

END-TO-END EYE DIAGRAM, 20m 24AWG CABLE AT 2.125Gbps

2.125Gbps PRBS7 + 100CID PATTERN, Oin FR4 AT INPUT, USING MAX3748 AS RECEIVER, AS SHOWN IN FIGURE 3

END-TO-END EYE DIAGRAM, 20m 24AWG CABLE AT 1.0625Gbps

1.0625Gbps PRBS7 + 100CID PATTERN, Oin FR4 AT INPUT, USING MAX3748 AS RECEIVER, AS SHOWN IN FIGURE 3

VERTICAL EYE OPENING vs. CABLE LENGTH WITH OUTLEV = LOW

VERTICAL EYE OPENING
vs. CABLE LENGTH WITH OUTLEV = LOW

INPUT RETURN LOSS vs. FREQUENCY

SFP Copper-Cable Preemphasis Driver

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. PRBS7 +100 CID pattern is PRBS $2^{7}, 100$ zeros, 1010, PRBS $2^{7}, 100$ ones, 0101.)

SFP Copper-Cable Preemphasis Driver

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. PRBS7 +100 CID pattern is PRBS $2^{7}, 100$ zeros, 1010, PRBS $2^{7}, 100$ ones, 0101. $)$

15m 24AWG CABLE ASSEMBLY OUTPUT WITHOUT MAX3982, 4.25Gbps PRBS31

30in FR4 OUTPUT WITHOUT MAX3982, 4.25Gbps CJTPAT

15m 24AWG CABLE ASSEMBLY OUTPUT WITH MAX3982 PREEMPHASIS, 4.25Gbps PRBS31

30in FR4 OUTPUT WITH MAX3982 PREEMPHASIS, 4.25Gbps CJTPAT

DETERMINISTIC JITTER
vs. FR4 LENGTH

SFP Copper-Cable Preemphasis Driver

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $\mathrm{PRBS} 7+100 \mathrm{CID}$ pattern is PRBS $2^{7}, 100$ zeros, 1010, PRBS $2^{7}, 100$ ones, 0101.)

30in FR4 OUTPUT WITH MAX3982 PREEMPHASIS,
4.25Gbps PRBS7 + 100CID

30in FR4 OUTPUT WITH MAX3982 PREEMPHASIS,

SFP Copper-Cable Preemphasis Driver

Pin Description

PIN	NAME	FUNCTION
1	$\mathrm{V}_{\mathrm{CC} 1}$	Power-Supply Connection for Input. Connect to +3.3V.
2	$\mathrm{IN}+$	Positive Data Input, CML. This input is internally terminated with 50Ω to $\mathrm{V}_{\mathrm{CC}} 1$.
3	IN-	Negative Data Input, CML. This input is internally terminated with 50Ω to $\mathrm{V}_{\mathrm{CC} 1}$.
4, 8, 9	GND	Circuit Ground
5	OUTLEV	Output-Swing Control Input, LVTTL with $40 \mathrm{k} \Omega$ Internal Pullup. Set to TTL high or open for maximum output swing, or set to TTL low for reduced swing.
6	PE1	Output Preemphasis Control Input, LVTTL with $10 \mathrm{k} \Omega$ Internal Pullup. This pin is the most significant bit of the 2-bit preemphasis control. Set high or open to assert this bit.
7	PEO	Output Preemphasis Control Input, LVTTL with $10 \mathrm{k} \Omega$ Internal Pullup. This pin is the least significant bit of the 2-bit preemphasis control. Set high or open to assert this bit.
10	OUT-	Negative Data Output, CML. This output is terminated with 50Ω to VCC2.
11	OUT+	Positive Data Output, CML. This output is terminated with 50Ω to VCC2.
12, 13	VCC2	Power-Supply Connection for Output. Connect to +3.3V.
14	TX_DISABLE	Transmitter Disable Input, LVTTL with $10 \mathrm{k} \Omega$ Internal Pullup. When high or open, differential output is 40 mV P-p. Set low for normal operation.
15	LOS	Loss-of-Signal Detect, TTL Output. This output is open-collector TTL, and therefore requires an external $4.7 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ pullup resistor (5.5 V maximum). This output sinks current when the input signal level is valid.
16	LOSLEV	LOS Sensitivity Control Input, LVTTL with 40k Ω Internal Pullup. Set to TTL high or open for less sensitivity (higher assert threshold). Set to TTL low for more sensitivity (lower assert threshold).
EP	$\begin{aligned} & \text { EXPOSED } \\ & \text { PAD } \end{aligned}$	Exposed Pad. For optimal thermal conductivity, this pad must be soldered to the circuit board ground.

Pin Configuration

*THE EXPOSED PAD OF THE QFN PACKAGE MUST BE SOLDERED TO GROUND FOR PROPER THERMAL OPERATION OF THE MAX3982.

SFP Copper-Cable Preemphasis Driver

Figure 4. Functional Diagram

Detailed Description

The MAX3982 comprises a PC board receiver, a cable driver, and a loss-of-signal detector with adjustable threshold (Figure 4). Equalization is provided in the receiver. Selectable preemphasis and selectable output amplitude are included in the transmitter. The MAX3982 also includes transmit disable control for the output.

PC Board Receiver and Cable Driver

Data is fed into the MAX3982 through a CML input stage and fixed equalization stage. The fixed equalizer in the receiver corrects for up to 10in of PC board loss on FR4 material at 4.25Gbps.
The cable driver includes four-state preemphasis to compensate for up to 15 m of $24 \mathrm{AWG}, 100 \Omega$ balanced cable. Table 1 is provided for easy translation between preemphasis expressions. The OUTLEV pin selects the output amplitude. When OUTLEV is low, the amplitude is 1200 mV P-P. When OUTLEV is high, the amplitude is

1600 mV p-p. Residual jitter of the MAX3982 is independent of up to 0.20UlP-P source jitter.

Loss-of-Signal (LOS) Output
Loss-of-signal detection is provided on the data input. Pullup resistors should be connected from LOS to a supply in the range of +3.0 V to +5.5 V . The LOS output is not valid until power-up is complete. Typical LOS response time is 100 ns .
The LOS assert and deassert levels are set by the LOSLEV pin. When LOSLEV is LVTTL high or open, the LOS assert threshold is 180 mV p-p. When LOSLEV is LVTTL low, the LOS assert threshold is 85 mV P-p.

TX Disable

Transmit disable is provided to turn off the output when desired. The TX_DISABLE pin can be connected to LOS to automatically squelch the output when the incoming signal is below the threshold set by LOSLEV (see the Autodetect section).

SFP Copper-Cable Preemphasis Driver

Table 1. Preemphasis Translation

| Ratio | α | 10Gbase-CX4 | IN dB |
| :---: | :---: | :---: | :---: | :---: |
| $\frac{V_{\text {HIGH_PP }}}{V_{\text {LOW_PP }}}$ | $\frac{V_{\text {HIGH_PP }}-V_{\text {LOW_PP }}}{V_{\text {HIGH_PP }}+V_{\text {LOW_PP }}}$ | $1-\frac{V_{\text {LOW_PP }}}{V_{\text {HIGH_PP }}}$ | $20\left[\log \left(\frac{V_{\text {HIGH_PP }}}{V_{\text {LOW_PP }}}\right)\right]$ |
| 1.26 | 0.11 | 0.21 | 2 |
| 1.58 | 0.23 | 0.37 | 4 |
| 2.51 | 0.43 | 0.6 | 8 |
| 5.01 | 0.67 | 0.8 | |

Applications Information

Autodetect

The MAX3982 can automatically detect an incoming signal and enable the data outputs. Autodetect can be accomplished by connecting the LOS pin to TX_DISABLE. TX_DISABLE has a $10 \mathrm{k} \Omega$ internal pullup resistor. If a loss-of-signal is detected, the TX_DISABLE pin is forced high and disables the outputs. Leaving the inputs to the MAX3982 open (i.e., floating) is not recommended as noise amplification may occur and create undesirable output signals. Autodetect is recommended to eliminate noise amplification or possible oscillation. For periods much greater than 100 ns without data transitions, autodetect disables the output.

Layout Considerations
Circuit board layout and design can significantly affect the performance of the MAX3982. Use good high-frequency design techniques, including minimizing ground inductance and using controlled-impedance transmission lines on the data signals. Power-supply decoupling should also be placed as close to the VCc pins as possible. This should be sufficient supply filtering. Always connect all V_{CC} pins to a power plane. Take care to isolate the input from the output signals to reduce feedthrough.

Exposed Pad Package

The exposed-pad, 16-pin QFN package incorporates features that provide a very low thermal resistance path for heat removal from the IC. The exposed pad on the MAX3982 must be soldered to the circuit board for proper thermal performance. For more information on exposed-pad packages, refer to Maxim Application Note HFAN-08.1: Thermal Considerations of QFN and Other Exposed-Paddle Packages.

Interface Schematics

Figure 5. IN+/IN-Equivalent Input Structure

Figure 6. OUT+/OUT- Equivalent Output Structure

SFP Copper-Cable Preemphasis Driver

Figure 8. Loss-of-Signal Equivalent Output Structure

Chip Information

TRANSISTOR COUNT: 2957
PROCESS: SiGe Bipolar

Figure 7. LVTTL Equivalent Input Structure

SFP Copper-Cable Preemphasis Driver

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

SFP Copper-Cable Preemphasis Driver

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

PKG	12L 3x3			16L 3x3		
REF.	MIN.	NOM.	MAX.	MIN,	NOM.	MAX.
A	0.70	0.75	0.80	0.70	0.75	0.80
b	0.20	0.26	0.30	0.20	0.26	0.30
D	2.90	3.00	3.10	290	3.00	3.10
E	200	3.00	3.10	2.80	3.00	3.10
-	0.50 BSC .			0.50 BSC .		
L	0.45	0.65	0.65	0.30	0.40	0.50
N	12			18		
ND	3			4		
NE	3			4		
A1	0	0.02	0.05	0	0.02	0.05
A2	0.20 REF			0.20 REF		
k	0.25	-	-	0.25	-	-

EXPOSED PAD VARIATIONS									
$\begin{aligned} & \text { PKG. } \\ & \text { CODES } \end{aligned}$	D2			E2			PINID	JEDEC	DOWN BONDS ALLOWED
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.			
T1233-1	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-1	NO
T1233-3	0.98	1.10	1.25	0.85	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-1	YES
T1833-1	0.95	1.10	1.25	0.85	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2	NO
T1833-2	0.05	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2	YES
T1633F-3	0.65	0.80	0.95	0.65	0.80	0.95	$0.225 \times 45^{\circ}$	WEED-2	N/A
T1833-4	0.96	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2	NO

NOTES:

1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TOTAL NUMBER OF TERMINALS.
4. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL \#1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL \#1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm FROM TERMINAL TIP.
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
9. DRAWING CONFORMS TO JEDEC MO220 REVISION C.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
\qquad 15

[^0]
[^0]: © 2004 Maxim Integrated Products
 Printed USA
 ЛИスXIルI is a registered trademark of Maxim Integrated Products.

