Product Description

Sirenza Microdevices' SPF-2000 is a high linearity, low noise $0.25 \mu \mathrm{~m}$ pHEMT. This $300 \mu \mathrm{~m}$ device is ideally biased at $3 \mathrm{~V}, 20 \mathrm{~mA}$ for lowest noise performance. At $5 \mathrm{~V}, 40 \mathrm{~mA}$ the device delivers excellent output TOI of 32 dBm . It provides ideal performance as driver stages in many commercial, industrial and military LNA applications.

SPF-2000
 Low Noise High Linearity pHEMT GaAs FET
 0.1-12 GHz Operation

Product Features

- 15 dB Gmax at 12 GHz
- $1.25 \mathrm{~dB}_{\text {MIN }}$ at 12 GHz
- +32 dBm Output IP3 at 12 GHz
- +20 dBm Output Power at 1dB Compression

Applications

- High IP3 LNA for VSAT, LMDS, Cellular Systems and Instrumentation
- Broadband Amplifiers

S y mbol	Device Characteristics:	Test Conditions, $\mathrm{Vds}=3 \mathrm{~V}$, $\mathrm{Ids}=20 \mathrm{~mA}, \mathrm{~T}=25^{\circ} \mathrm{C}$ (unless otherwise noted)	$\begin{gathered} \text { Test } \\ \text { Frequency } \end{gathered}$	U n its	M in .	Typ.	Max.
G max	Maximum Available Gain ${ }^{[2]}$	$\mathrm{z}_{\mathrm{s}}=\mathrm{Z}^{*}{ }^{*}, \mathrm{z}_{\mathrm{L}}=\mathrm{z}_{\mathrm{L}}{ }^{*}$	$\begin{aligned} & 1.9 \mathrm{GHz} \\ & 4.0 \mathrm{GHz} \\ & 12.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & d B \\ & d B \end{aligned}$	$\begin{aligned} & 21 \\ & 13 \end{aligned}$	$\begin{aligned} & 25 \\ & 23 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 17 \end{aligned}$
S_{21}	Insertion Gain ${ }^{[2]}$	$Z_{\text {s }}=Z_{L}=500 \mathrm{hms}$	1.9 GHz	dB	16	18	20
N $\mathrm{F}_{\text {M IN }}$	Minimum Noise Figure	$Z_{\text {s }}=$ Gamma-opt, $Z_{L}=Z_{L}{ }^{*}$	$\begin{aligned} & 2.0 \mathrm{GHz} \\ & 4.0 \mathrm{GHz} \\ & 12.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & d B \\ & d B \end{aligned}$	-	$\begin{aligned} & 0.5 \\ & 0.6 \\ & 1.2 \end{aligned}$	-
$\mathrm{P}_{1 \mathrm{~dB}}$	Output 1dB Compression Point	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=40 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=40 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=20 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 2.0 \mathrm{GHz} \\ 2.0 \mathrm{GHz} \\ 12.0 \mathrm{GHz} \\ 12.0 \mathrm{GHz} \end{gathered}$	dBm dBm dBm dBm	- -	$\begin{gathered} 20.0 \\ 15.0 \\ 21 \\ 18 \\ \hline \end{gathered}$	-
$\mathrm{G}_{1 \mathrm{~dB}}$	Gain at 1dB Compression Point	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{DS}}=40 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=3 \mathrm{~V}, \mathrm{D}_{\mathrm{DS}}=20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{DS}}=40 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=20 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 2.0 \mathrm{GHz} \\ 2.0 \mathrm{GHz} \\ 12.0 \mathrm{GHz} \\ 12.0 \mathrm{GHz} \end{gathered}$	dBm dBm dBm d B m	-	$\begin{aligned} & 17.7 \\ & 17.0 \\ & 13.0 \\ & 11.0 \end{aligned}$	-
OIP 3	Output Third Order Intercept Point	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, I_{\mathrm{DS}}=40 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=3 \mathrm{~V}, I_{\mathrm{DS}}=20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=5 \mathrm{~V}, I_{\mathrm{DS}}=40 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=3 \mathrm{~V}, I_{\mathrm{DS}}=20 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 2.0 \mathrm{GHz} \\ 2.0 \mathrm{GHz} \\ 12.0 \mathrm{GHz} \\ 12.0 \mathrm{GHz} \end{gathered}$	dBm d B m dBm dBm	-	$\begin{aligned} & 32 \\ & 28 \\ & 32 \\ & 30 \end{aligned}$	-
$\mathrm{I}_{\text {Ds }}$	S aturated D rain Current ${ }^{[2]}$			m A	30	85	140
V_{p}	Pinchoff Voltage ${ }^{[1]}$	$\mathrm{V}_{\mathrm{Ds}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=0.150 \mathrm{~mA}$		V	-1.5	-1.0	-0.5
G_{M}	Transconductance	$\mathrm{V}_{\text {GS }}=-0.25 \mathrm{~V}$		m S	-	112	-
$B V_{\text {G }}$	Gate to Source Breakdown Voltage ${ }^{[1]}$	$\mathrm{I}_{\mathrm{GS}}=0.3 \mathrm{~mA}$, drain open		V	-	-17	-8
$B V_{\text {GD }}$	Gate to Drain Breakdown Voltage ${ }^{[1]}$	$\mathrm{I}_{G D}=0.3 \mathrm{~mA}, \mathrm{~V}_{\text {GS }}=-3.0 \mathrm{~V}$		V	-	-17	-8
$\mathbf{R}_{\text {TH }}$	Thermal Resistance			C /W		110	
$\mathrm{V}_{\text {ds }}$	Operating Voltage ${ }^{[3]}$	Drain-source		v			5.5
I_{DQ}	Operating Current ${ }^{[3]}$	D rain-source, quiescent		m A			55
$\mathrm{P}_{\text {Dis s }}$	Power Dissipation ${ }^{[3]}$			W			0.2

[1] 100\% tested - DC parameters tested on wafer
[2] Sample tested - Samples pullled from each wafer lot. Sample test specifications are based on statistical data from sample test measurements.
[3] $V_{D S}{ }^{*} I_{D Q}<P_{D I S S}$ is recommended for continuous reliable operation.

Absolute Maximum Ratings

Operation of this device beyond any one of these parameters may cause permanent damage.

MTTF is inversely proportional to the device junction temperature. For junction temperature and MTTF considerations the operating conditions should also satisfy the following experssions:

$$
\mathrm{P}_{\mathrm{DC}}-\mathrm{P}_{\mathrm{OUT}}<\left(\mathrm{T}_{J}-\mathrm{T}_{\mathrm{L}}\right) / \mathrm{R}_{\mathrm{TH}}
$$

where:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{DC}}=\mathrm{I}_{\mathrm{DS}}{ }^{*} \mathrm{~V}_{\mathrm{DS}}(\mathrm{~W}) \\
& \mathrm{P}_{\mathrm{OUT}}=\mathrm{RF} \text { Output Power }(\mathrm{W}) \\
& \mathrm{T}_{\mathrm{J}}=\text { Junction Temperature }\left({ }^{\circ} \mathrm{C}\right) \\
& \mathrm{T}_{\mathrm{L}}=\text { Lead Temperature }(\text { pin } 4)\left({ }^{\circ} \mathrm{C}\right) \\
& \mathrm{R}_{\mathrm{TH}}=\text { Thermal Resistance }\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)
\end{aligned}
$$

Parameter	Symbol	Value	Unit
Drain Current	I_{DS}	$\mathrm{L}_{\mathrm{DSS}}$	mA
Forward Gate Current	$\mathrm{I}_{\mathrm{GSF}}$	0.3	mA
Reverse Gate Current	$\mathrm{I}_{\mathrm{GSR}}$	0.3	mA
Drain-to-Source Voltage	V_{DS}	+7	V
Gate-to-Drain Voltage	V_{GD}	-8	V
Gate-to-Source Voltage	V_{GS}	<-5 or >0	V
RF Input Power	P_{IN}	100	mW
Operating Temperature	T_{OP}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stor }}$	-40 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	$\mathrm{P}_{\mathrm{DISS}}$	600	mW
Channel Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$

Assembly Instructions:

The recommended die attach is conductive epoxy or AuSn (80/20) solder with limited exposure to temperatures at or above 300C. The preferred wirebond method is thermo-compression wedge bond using 0.7 mil gold wire with a maximum stage temperature of 200C. Aluminum wire should not be used.

Design Data:

Complete design data including S-parameters, noise parameters, and large signal model are available upon request by contacting applications support at baredie-apps@sirenza.com

Preliminary
SPF-2000 Low Noise High Linearity FET

Caution: ESD sensitive

Part Number Ordering Information
Appropriate precautions in handling, packaging and testing devices must be observed.

Part Number	Reel Size	Devices/Pack
SPF-2000	Gel Pak	100

Units: millimeters (inches)
Thickness: 0.1016 (0.004)
Chip edge to bond pad dimensions are shown to center of bond pad
Chip size tolerance: +/- 0.051 (0.002)
Hond Pad \#1,\#2 (Source) 0.056×0.123 (0.002 $\times 0.005$)
Bond Pad \#3,\#4 (Drain) $0.070 \times 0.074(0.003 \times 0.003)$
Bond Pad \#5,\#6 (Gate) 0.056×0.065 (0.002 $\times 0.003$)

