MITSUBISHI MICROCOMPUTERS 4282 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

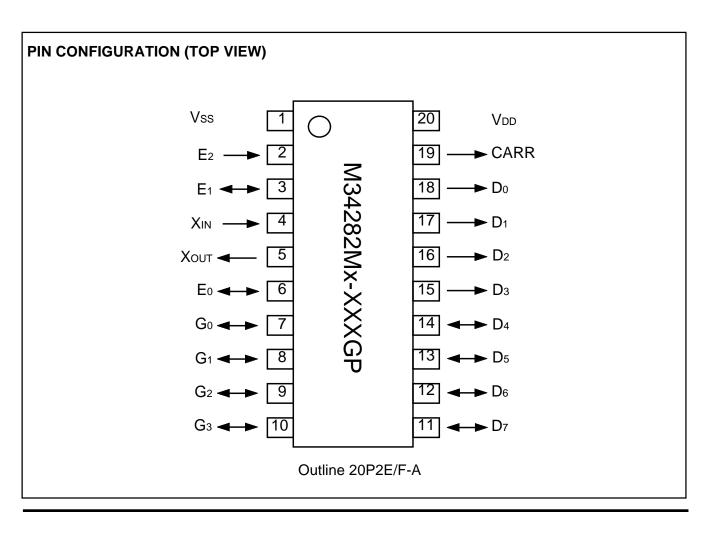
DESCRIPTION

The 4282 Group enables fabrication of 8×7 key matrix and has the followin timers;

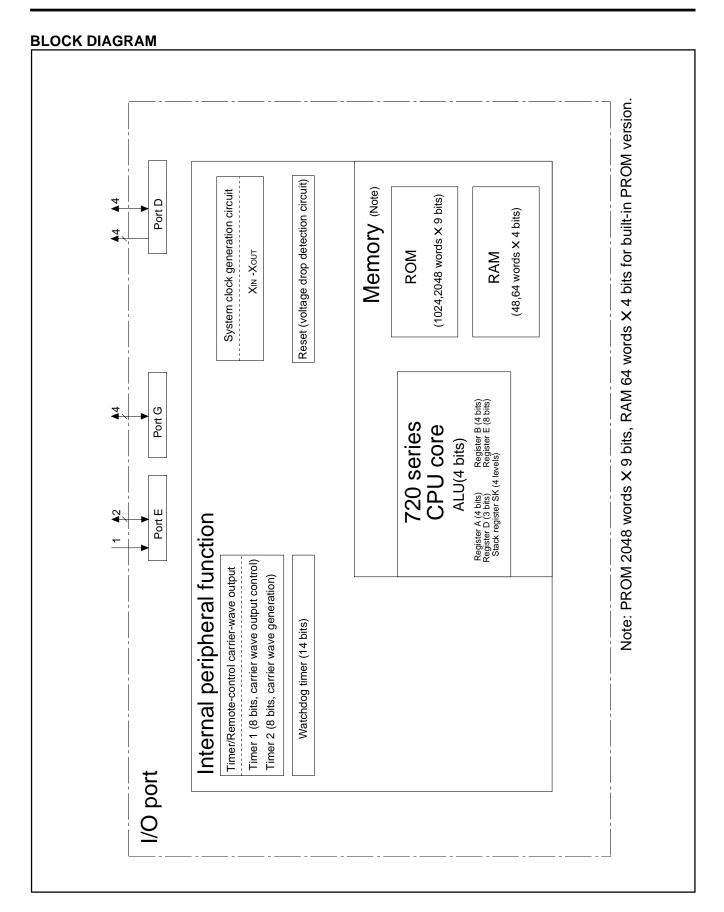
- an 8-bit timer which can be used to set each carrier wave and has two reload register
- an 8-bit timer which can be used to auto-control and has a reload register.

FEATURES

- Number of basic instructions 68
- Supply voltage 1.8 V to 3.6 V


(This has two reload registers and carrier wave output function)

- Logic operation function (XOR, OR, AND)
- RAM back-up function
- Key-on wakeup function (ports D4–D7, E0–E2, G0–G3) 11
- I/O port (ports D, E, G, CARR) 16
- Oscillation circuit Ceramic resonance
- Watchdog timer
- Power-on reset circuit
- Voltage drop detection circuit Typical:1.50 V (system reset)


APPLICATION

Various remote control transmitters

Product	ROM (PROM) size (× 9 bits)	RAM size (× 4 bits)	Package	ROM type
M34282M1-XXXGP	1024 words	48 words	20P2E/F-A	Mask ROM
M34282M2-XXXGP	2048 words	64 words	20P2E/F-A	Mask ROM
M34282E2GP	2048 words	64 words	20P2E/F-A	One Time PROM

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PERFORMANCE OVERVIEW

Pa	aramete	r	Function
Number of bas	ic instru	ctions	68
Minimum instru	uction ex	ecution time	8.0 μ s (f(XIN) = 4.0 MHz, system clock = f(XIN)/8, VDD = 3 V)
Memory sizes	ROM	M34282M2/E2	2048 words X 9 bits
		M34282M1	1024 words X 9 bits
	RAM	M34282M2/E2	64 words X 4 bits
		M34282M1	48 words X 4 bits
Input/Output	D0-D3	Output	Four independent output ports
ports	D4–D7	I/O	Four independent I/O ports with the pull-down function
	E0–E2	Input	3-bit input port with the pull-down function
	E0, E1	Output	2-bit output port (E ₀ , E ₁)
	G0–G3	I/O	4-bit I/O port with the pull-down function
	CARR	Output	1-bit output port; CMOS output
Timer	Timer 1		8-bit timer with a reload register
	Timer 2	2	8-bit timer with two reload registers
Subroutine nes	sting		4 levels (However, only 3 levels can be used when the TABP p instruction is executed)
Device structur	e		CMOS silicon gate
Package			20-pin plastic molded SSOP (20P2E/F-A)
Operating temp	perature	range	–20 °C to 85 °C
Supply voltage			1.8 V to 3.6 V
Power	Active I	mode	400 μΑ
dissipation			(f(XIN) = 4.0 MHz, system clock = f(XIN)/8, VDD = 3 V)
(typical value)	RAM b	ack-up mode	0.1 μ A (at room temperature, VDD = 3 V)

PIN DESCRIPTION

Pin	Name	Input/Output	Function
Vdd	Power supply	—	Connected to a plus power supply.
Vss	Ground	_	Connected to a 0 V power supply.
Xin	System clock input	Input	I/O pins of the system clock generating circuit. Connect a ceramic resonator
Хоит	System clock output	Output	between pins XIN and XOUT. The feedback resistor is built-in between pins XIN and XOUT.
D0-D3	Output port D	Output	Each pin of port D has an independent 1-bit wide output function. The output structure is P-channel open-drain.
D4–D7	I/O port D	I/O	1-bit I/O port. For input use, set the latch of the specified bit to "0." When the built- in pull-down transistor is turned on, the key-on wakeup function using "H" level sense and the pull-down transistor become valid. The output structure is P-channel open-drain.
E0-E2	I/O port E	Output	2-bit (E0, E1) output port. The output structure is P-channel open-drain.
		Input	3-bit input port. For input use (E0, E1), set the latch of the specified bit to "0." When the built-in pull-down transistor is turned on, the key-on wakeup function using "H" level sense and the pull-down transistor become valid. Port E2 has an input-only port and has a key-on wakeup function using "H" level sense and pull-down transistor.
G0–G3	I/O port G	I/O	4-bit I/O port. For input use, set the latch of the specified bit to "0." The output structure is P-channel open-drain. When the built-in pull-down transistor is turned on, the key-on wakeup function using "H" level sense and pull-down transistor become valid.
CARR	Carrier wave output for remote control	Output	Carrier wave output pin for remote control. The output structure is CMOS circuit.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

CONNECTIONS OF UNUSED PINS

Pin	Connection
D0-D7	Open or connect to VDD pin (Note 1).
E0, E1	Set the output latch to "1" and open, or
	connect to VDD pin (Note 2).
E2	Open or connect to Vss pin.
G0–G3	Set the output latch to "1" and open, or
	connect to VDD pin (Note 2).

Notes 1: Ports D4–D7: Set the bit 2 (PU02) of the pull-down control register PU1 to "0" by software and turn the pull-down transistor OFF.

2: Set the corresponding bits of the pull-down control register PU0 to "0" by software and turn the pull-down transistor OFF.

(Note in order to set the output latch to "1" to make pins open)

- After system is released from reset, a port is in a high-impedance state until the output latch of the port is set to "1" by software. Accordingly, the voltage level of pins is undefined and the excess of the supply current may occur.
- To set the output latch periodically is recommended because the value of output latch may change by noise or a program run away (caused by noise).

(Note when connecting to Vss and VDD)

• Connect the unused pins to Vss or Vbb at the shortest distance and use the thick wire against noise.

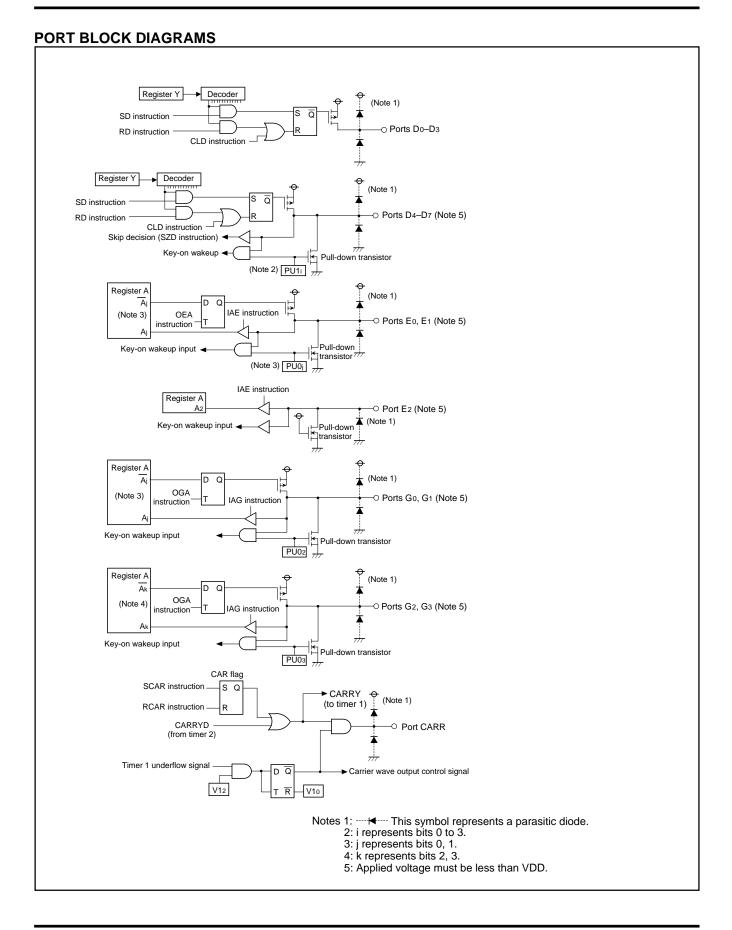
Port	Pin	Input/	Output structure	Control	Control	Control	Remark
1 OIT	E III	Output		bits	instructions	registers	Remark
Port D	D0-D3	Output	P-channel open-drain	1 bit	SD		
		(4)			RD		
					CLD		
	D4-D7	I/O	-		SD	PU1	Pull-down function and
		(4)			RD		key-on wakeup function
					CLD		(programmable)
					SZD		
Port E	Eo	I/O	P-channel open-drain	Output:	OEA	PU0	Pull-down function and
	E1	(2)		2 bits	IAE		key-on wakeup function
				Input:			(programmable)
	E2	Input		3 bits	IAE		
		(1)					
Port G	G0-G3	I/O	P-channel open-drain	4 bits	OGA	PU0	Pull-down function and
		(4)			IAG		key-on wakeup function
							(programmable)
Port CARR	CARR	Output	CMOS	1 bit	SCAR		
		(1)			RCAR		

PORT FUNCTION

DEFINITION OF CLOCK AND CYCLE

System clock (STCK)

The system clock is the source clock for controlling this product. It can be selected as shown below whether to use the CCK instruction.


CCK instruction	System clock	Instruction clock
When not using	f(XIN)/8	f(Xın)/32
When using	f(Xin)	f(XIN)/4

• Instruction clock (INSTCK)

The instruction clock is a signal derived by dividing the system clock by 4, and is the basic clock for controlling CPU. The one instruction clock cycle is equivalent to one machine cycle.

• Machine cycle The machine cycle is the cycle required to execute the instruction.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of Ao is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4bit data, and for 8-bit data transfer together with register A. Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

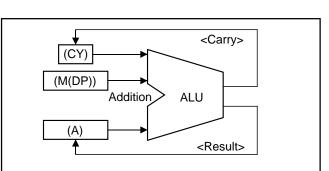
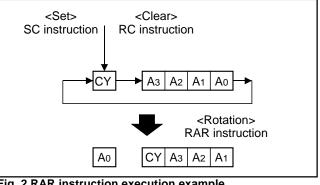
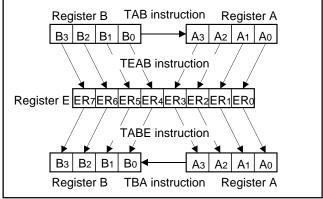
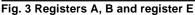





Fig. 1 AMC instruction execution example

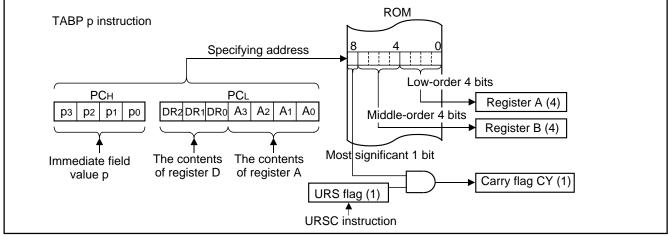


Fig. 4 TABP p instruction execution example

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(5) Most significant ROM code reference enable flag (URS) URS flag controls whether to refer to the contents of the most significant 1 bit (bit 8) of ROM code when executing the TABP p instruction. If URS flag is "0," the contents of the most significant 1 bit of ROM code is not referred even when executing the TABP p instruction. However, if URS flag is "1," the contents of the most significant 1 bit of ROM code is set to flag CY when executing the TABP p instruction (Figure 4).

URS flag is "0" after system is released from reset and returned from RAM back-up mode. It can be set to "1" with the URSC instruction, but cannot be cleared to "0."

(6) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are four identical registers, so that subroutines can be nested up to 4 levels. However, one of stack registers is used when executing a table reference instruction. Accordingly, be careful not to over the stack. The contents of registers SKs are destroyed when 4 levels are exceeded.

The register SK nesting level is pointed automatically by 2-bit stack pointer (SP).

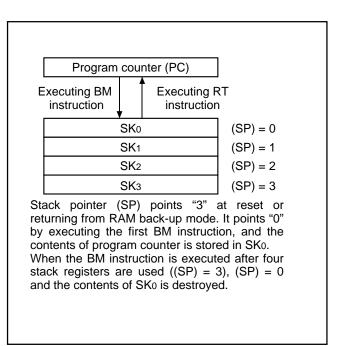

Figure 5 shows the stack registers (SKs) structure.

Figure 6 shows the example of operation at subroutine call.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions.

Note : The 4282 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

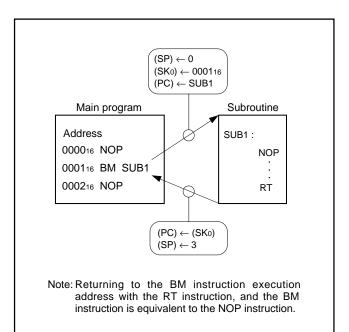


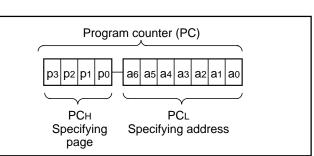
Fig. 6 Example of operation at subroutine call

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

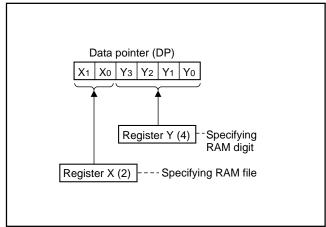
(8) Program counter (PC)

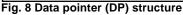
Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PC_H (most significant bit to bit 7) which specifies to a ROM page and PC_L (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).


Make sure that the $\mathsf{PC}\mathsf{H}$ does not exceed after the last page of the built-in ROM.

(9) Data pointer (DP)


Data pointer (DP) is used to specify a RAM address and consists of registers X and Y. Register X specifies a file and register Y specifies a RAM digit (Figure 8).


Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

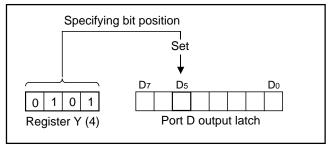


Fig. 9 SD instruction execution example

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PROGRAM MEMORY (ROM)

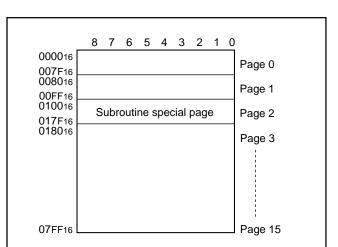
The program memory is a mask ROM. 1 word of ROM is composed of 9 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127).

Table 1 ROM size and pages

Product	ROM size (X 9 bits)	Pages
M34282M2/E2	2048 words	16 (0 to 15)
M34282M1	1024 words	8 (0 to 7)

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern of all addresses can be used as data areas with the TABP p instruction.


DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers X and Y. Set a value to the data pointer certainly when executing an instruction to access RAM.

Table 2 shows the RAM size. Figure 11 shows the RAM map.

Table 2 RAM size

Product	RAM size
M34282M2/E2	64 words X 4 bits (256 bits)
M34282M1	48 words X 4 bits (192 bits)

Fig. 10 ROM map of M34282M2/E2

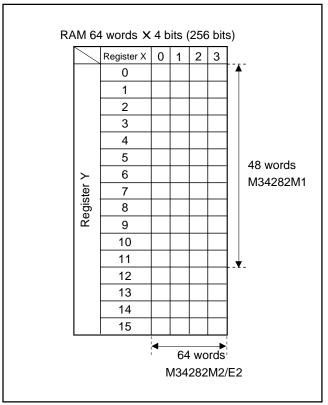
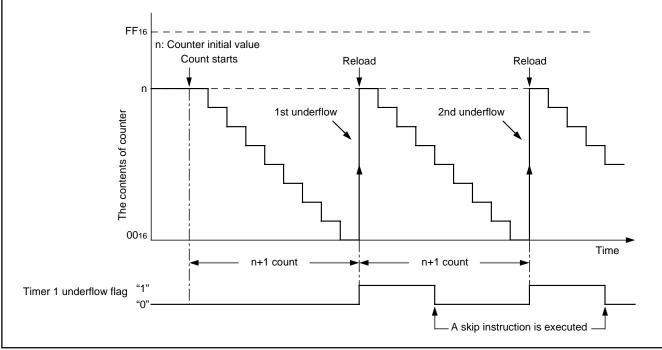


Fig. 11 RAM map


SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

TIMERS

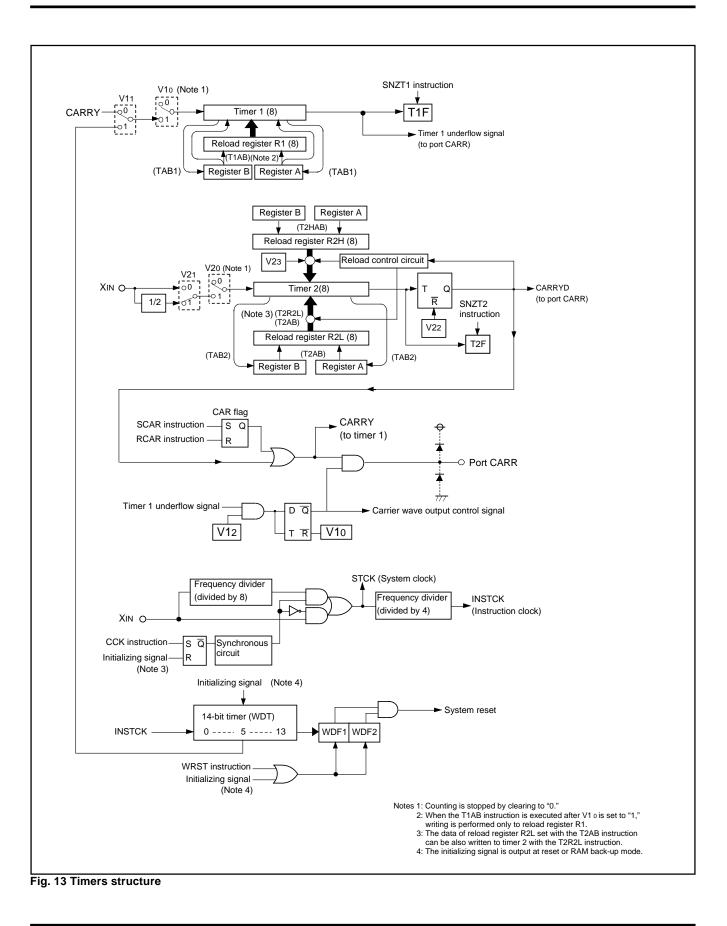
The 4282 Group has the programmable timer.

Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer 1 underflow flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

Fig. 12 Auto-reload function

The 4282 Group timer consists of the following circuit.


- Timer 1 : 8-bit programmable timer
- Timer 2 : 8-bit programmable timer

These timers can be controlled with the timer control registers V1 and V2. Each timer function is described below.

Table 3 Function related timer

Circuit	Structure	Count source	Frequency	Use of output signal	Control
Circuit	Structure	Count source	dividing ratio		register
Timer 1	8-bit programmable	Carrier wave output (CARRY)	1 to 256	Carrier wave output control	V1
	binary down counter	 Bit 5 of watchdog timer 			
Timer 2	8-bit programmable	• f(XIN)	1 to 256	Carrier wave output	V2
	binary down counter	• f(XIN)/2			
14-bit timer	14-bit fixed frequency	Instruction clock	16384	Watchdog timer	
				Timer 1 count source	

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Table 4 Control registers related to timer

	Timer control register V1	at	t reset : 0002	at RAM back-up : 0002	W
V12	Corrier ways output outs control hit	0	Auto-control output	t by timer 1 is invalid	
V 12	Carrier wave output auto-control bit	1	Auto-control output	t by timer 1 is valid	
V11	Timer 1 count source selection bit	0	Carrier wave output	it (CARRY)	
V I1		1	Bit 5 of watchdog ti	imer (WDT)	
1/4.	Timor 1 control bit	0	Stop (Timer 1 state	e retained)	
V10	Timer 1 control bit	1	Operating		

	Timer control register V1	at	reset : 00002	at RAM back-up : 00002	W
V13	Corrier wave "H" interval expansion hit	0	To expand "H" inte	rval is invalid	
V 13	Carrier wave "H" interval expansion bit	1	To expand "H" inte	rval is valid (when V22=1 selected)	
1/4-	Corrier ways concration function control hit	0	Carrier wave gener	ation function invalid	
V12	Carrier wave generation function control bit	1	Carrier wave gener	ation function valid	
V/4 .	Timer 2 count course coloction bit	0	f(XIN)		
V11	Timer 2 count source selection bit	1	f(XIN)/2		
	Timer 2 control hit	0	Stop (Timer 2 state	e retained)	
V10	Timer 2 control bit	1	Operating		

Note: "W" represents write enabled.

- (1) Control registers related to timer
- Timer control register V1

Register V1 controls the timer 1 count source and autocontrol function of carrier wave output from port CARR by timer 1. Set the contents of this register through register A with the TV1A instruction.

 Timer control register V2 Register V2 controls the timer 2 count source and the carrier wave generation function by timer. Set the contents of this register through register A with the TV2A instruction.

(2) Precautions

Note the following for the use of timers.

Count source Stop timer 1 or timer 2 counting to change its count source.
Watchdog timer

Be sure that the timing to execute the WRST instruction in order to operate WDT efficiently.

Writing to reload register R1
 When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

 Timer 1 count operation
 When the bit 5 of the watchdog timer (WDT) is selected as the timer 1 count source, the error of maximum ± 256 µs (at the minimum instruction execution time : 8 µs) is generated from timer 1 start until timer 1 underflow. When programming, be careful about this error.

Stop of timer 2

Avoid a timing when timer 2 underflows to stop timer 2.

- Writing to reload register R2H When writing data to reload register R2H while timer 2 is operating, avoid a timing when timer underflows.
- Timer 2 carrier wave output function When to expand "H" interval of carrier wave is valid, set "1" or more to reload register R2H.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(3) Timer 1

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1).

When timer is stopped, data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction.

When timer is operating, data can be set to only reload register R1 with the T1AB instruction.

When setting the next count data to reload register R1 at operating, set data before timer 1 underflows.

Timer 1 starts counting after the following process;

① set data in timer 1,

② select the count source with the bit 1 of register V1, and③ set the bit 0 of register V1 to "1."

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 underflow flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

When the bit 2 of register V1 is set to "1," the carrier wave output enable/disable interval of port CARR is alternately generated each timer 1 underflows (Figure 14).

Data can be read from timer 1 to registers A and B. When reading the data, stop the counter and then execute the TAB1 instruction.

(4) Timer 2

Timer 2 is an 8-bit binary down counter with the timer 2 reload registers (R2H and R2L).

Data can be set simultaneously in timer 2 and the reload register (R2L) with the T2AB instruction.

The contents of reload register (R2L) set with the T2AB instruction can be set again to timer 2 with the T2R2L instruction. Data can be set to reload register (R2H) with the T2HAB instruction.

Timer 2 starts counting after the following process;

① set data in timer 2,

2 select the count source with the bit 1 of register V2, and

③ select the valid/invalid of the carrier wave generation function by bit 2 of register V1 (when this function is valid, select the valid/invalid of the carrier wave "H" interval expansion by bit 3), and

④ set the bit 0 of register V1 to "1."

When the carrier wave generation function is invalid (V22="0"), the following operation is performed;

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 underflow flag (T2F) is set to "1," new data is loaded from reload register R2L, and count continues (auto-reload function).

When a value set in reload register R2L is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

When the carrier wave generation function is valid (V22="1"), the carrier wave which has the "L" interval set to the reload register R2L and "H" interval set to the reload register R2H can be output (Figure 15).

After the count of the "L" interval of carrier wave is started, timer 2 underflows and the timer 2 underflow flag (T2F) is set

to "1". Then, the "H" interval data of carrier wave is reloaded from the reload register R2H, and count continues.

When timer underflows again after auto-reload, the T2F flag is set to "1". And then, the "L" interval data of carrier wave is reloaded from the reload register R2L, and count continues. After that, each timer underflows, data is reloaded from reload register R2H and R2L alternately.

When a value set in reload register R2H is n, "H" interval of carrier wave is as follows;

- ① When to expand "H" interval is invalid ($V2_3 = "0"$), Count source X (n+1), n = 0 to 255
- When to expand "H" interval is valid (V2₃ = "1"), Count source X (n+1.5), n = 1 to 255

When a value set in reload register R2L is m, "L" interval of carrier wave is as follows;

Count source X (m+1), m = 0 to 255

Data can be read from timer 2 to registers A and B. When reading the data, stop the counter and then execute the TAB2 instruction.

(5) Timer underflow flags (T1F, T2F)

Timer 1 underflow flag or timer 2 underflow flag is set to "1" when the timer 1 or timer 2 underflows. The state of flags T1F and T2F can be examined with the skip instruction (SNZT1, SNZT2).

Flags T1F and T2F are cleared to "0" when the next instruction is skipped with a skip instruction.

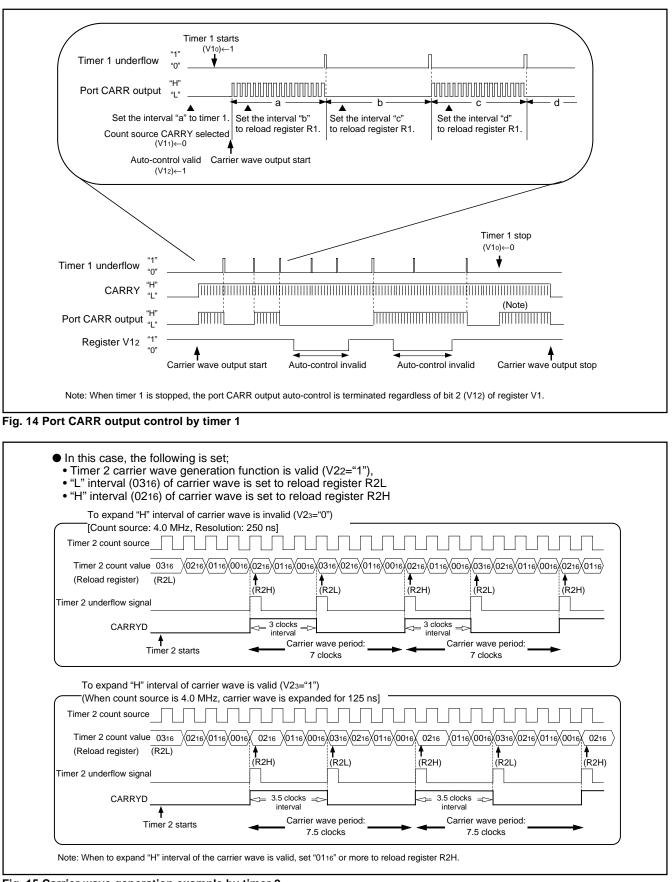


Fig. 15 Carrier wave generation example by timer 2

— Timer 2 count sta	rt timing)
Machine cycle M	_/p	Mi + 2
Instruction clock	TV2A instruction execution cycle (V20) ←	1
=f(XIN)/8		
Xin Xin/2	lununnnnnnnnun	
(Count source selected)		
Register V20		
Timer 2 count value	0316 (0216)	0116 0016 0216 0116 0016 0316 0216
(Reload register) Timer 2 underflow signal	(R2L)	T T (R2H) (R2L)
CARRYD		
	Timer 2 count start	timing
Timer 2 count	stop timing	
Timer 2 count Machine cycle Mi		
Machine cycle Mi		/ I
_	 Мі + 1	/ I
Machine cycle Min	 Мі + 1	/ I
Machine cycle Mi Instruction clock =f(XIN)/8	 Мі + 1	/ I
Machine cycle Mi Instruction clock =f(XIN)/8 XIN XIN/2	 Мі + 1	/ I
Machine cycle M Instruction clock =f(XIN)/8 XIN XIN/2 (Count source selected)	 Мі + 1	/ I
Machine cycle M Instruction clock =f(XIN)/8 XIN XIN/2 (Count source selected) Register V20 Timer 2 count value (Reload register)	Mi + 1 TV2A instruction execution cycle (V20) Image: Structure Image: Structure	/ I
Machine cycle Mi Instruction clock =f(XIN)/8 XIN XIN/2 (Count source selected) Register V20 Timer 2 count value	Mi + 1 TV2A instruction execution cycle (V20)←0	/ I
Machine cycle M Instruction clock =f(XIN)/8 XIN XIN/2 (Count source selected) Register V20 Timer 2 count value (Reload register)	Mi + 1 TV2A instruction execution cycle (V20)←0	/ I
Machine cycle Mi Instruction clock =f(XIN)/8 XIN XIN/2 (Count source selected) Register V20 Timer 2 count value (Reload register) Timer 2 underflow signal	Mi + 1 TV2A instruction execution cycle (V20)←0 0010/0316/0216/0110/0016/0216/0110/0016/0216 (R2L) (R2H) (R2L) (R2H)	

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

WATCHDOG TIMER

Watchdog timer provides a method to reset and restart the system when a program runs wild. Watchdog timer consists of 14-bit timer (WDT) and watchdog timer flags (WDF1, WDF2).

Watchdog timer downcounts the instruction clock (INSTCK) as the count source immediately after system is released from reset. When the timer WDT count value becomes 000016 and underflow occurs, the WDF1 flag is set to "1." Then, when the WRST instruction is not executed before the timer WDT counts 16383, WDF2 flag is set to "1" and internal reset signal is generated and system reset is performed.

Execute the WRST instruction at period of 16383 machine cycle or less to keep the microcomputer operation normal.

Timer WDT is also used for generation of oscillation stabilization time. When system is returned from reset and from RAM backup mode by key-input, software starts after the stabilization oscillation time until timer WDT downcounts to 3E0016 elapses.

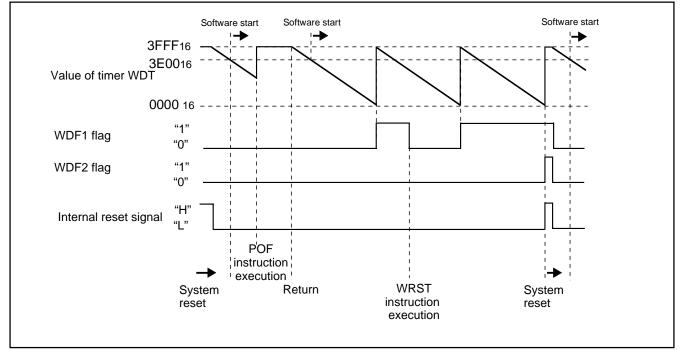


Fig. 17 Watchdog timer function

LOGIC OPERATION FUNCTION

The 4282 Group has the 4-bit logic operation function. The logic operation between the contents of register A and the low-order 4 bits of register E is performed and its result is stored in register A.

Table 5 Logic operation selection register LO

Each logic operation can be selected by setting logic operation selection register LO.

Set the contents of this register through register A with the TLOA instruction. The logic operation selected by register LO is executed with the LGOP instruction.

Table 5 shows the logic operation selection register LO.

Lo	gic operation selection register LO	at reset : 002			at RAM back-up : 002	W	
		LO1 LO0			Logic operation function		
LO1		0	0	Exclusive logic OR operation (XOR)			
	Logic operation selection bits	0	1	OR operation (OR)			
LOo		1	0	AND operation (AND)			
		1	1	Not available			

Note: "W" represents write enabled.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RESET FUNCTION

The 4282 Group has the power-on reset circuit, though it does not have $\overrightarrow{\text{RESET}}$ pin. System reset is performed automatically at power-on, and software starts program from address 0 in page 0.

In order to make the built-in power-on reset circuit operate efficiently, set the voltage rising time until VDD= 0 to 2.2 V is obtained at power-on 1ms or less.

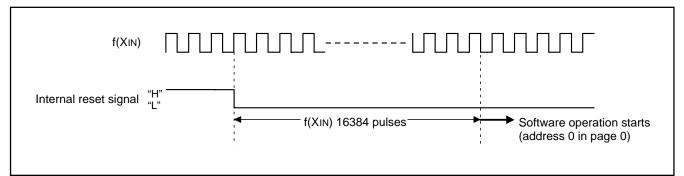
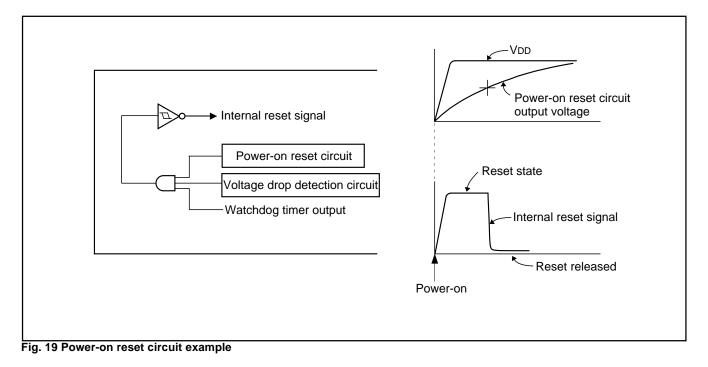



Fig. 18 Reset release timing

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(1) Internal state at reset

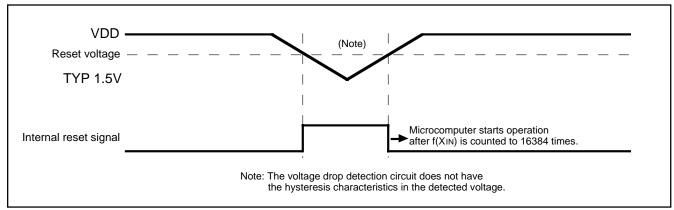
Table 6 shows port state at reset, and Figure 20 shows internal state at reset (they are retained after system is released from reset).

The contents of timers, registers, flags and RAM except shown in Figure 20 are undefined, so set the initial value to them.

• Program counter (PC)
Address 0 in page 0 is set to program counter.
• Power down flag (P)0
Timer 1 underflow flag (T1F)
Timer 2 underflow flag (T2F)
Timer control register V1
Timer control register V2
Port CARR output flag (CAR)
Pull-down control register PU0
Pull-down control register PU1
Logic operation selection register LO
Most significant ROM code reference enable flag (URS)
• Carry flag (CY)0
• Register A 1 1 1 1
• Register B
Register X
• Register Y
Stack pointer (SP)

Fig. 20 Internal state at reset

Table 6 Port state at reset


Name	State at reset					
D0-D3	High impedance state					
D4D7	High impedance state (Pull-down transistor OFF)					
G0–G3	High impedance state (Pull-down transistor OFF)					
E0, E1	High impedance state (Pull-down transistor OFF)					
CARR	"L" output					

Note: The contents of all output latch is initialized to "0."

VOLTAGE DROP DETECTION CIRCUIT

The built-in voltage drop detection circuit is designed to detect a drop in voltage at operating and to reset the microcomputer if the supply voltage drops below the specified value (Typ. 1.50 V) or less.

The voltage drop detection circuit is stopped and power dissipation is reduced in the RAM back-up mode with the initialized CPU stopped.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RAM BACK-UP MODE

The 4282 Group has the RAM back-up mode.

When the POF instruction is executed, system enters the RAM back-up state.

As oscillation stops retaining RAM, the functions and states of reset circuit at RAM back-up mode, power dissipation can be reduced without losing the contents of RAM. Table 7 shows the function and states retained at RAM back-up. Figure 22 shows the state transition.

(1) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the POF instruction, the CPU starts executing the software from address 0 in page 0. In this case, the P flag is "1."

(2) Cold start condition

The CPU starts executing the software from address 0 in page 0 when any of the following conditions is satisfied .

- reset by power-on reset circuit is performed
- reset by watchdog timer is performed
- reset by voltage drop detection circuit is performed
- In this case, the P flag is "0."

(3) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

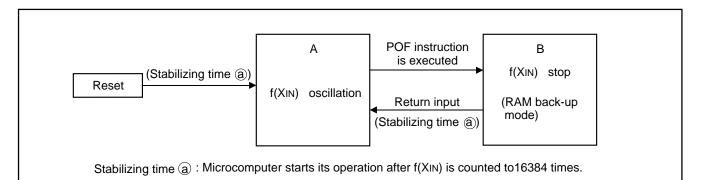
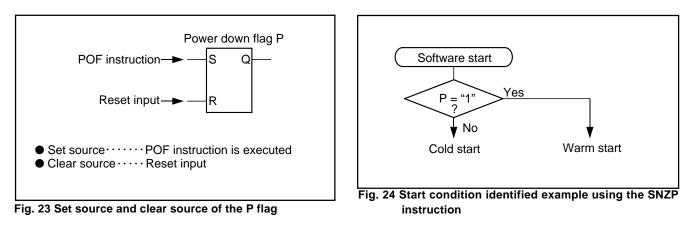

Table 7 Functions and states retained at RAM back-up

Table 7 1 difetions and states retained at train such up					
RAM back-up					
×					
^					
0					
×					
0					
0					
0					
×					
0					
×					
×					
×					
×					
×					
×					


Notes 1: "O" represents that the function can be retained, and "X" represents that the function is initialized.

Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning. 2:The stack pointer (SP) points the level of the stack

register and is initialized to "112" at RAM back-up.

Fig. 22 State transition

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(4) Return signal

An external wakeup signal is used to return from the RAM back-up mode. Table 8 shows the return condition for each return source.

Table 8 Return source and return condition

Return source	Return condition	Remarks
Ports D4–D7	Return by an external "H" level	Only key-on wakeup function of the port whose pull-down transistor is
	input.	turned ON by register PU1 is valid.
Ports E0, E1, G	Return by an external "H" level	Only key-on wakeup function of the port whose pull-down transistor is
	input.	turned ON by register PU0 is valid.
Ports E2	Return by an external "H" level	Key-on wakeup function is always valid.
	input.	

(5) Pull-down control register

Registers PU0 and PU1 are 4-bit registers and control the ON/OFF of pull-down transistor and key-on wakeup function for ports E_0 , E_1 , G and ports D_4 – D_7 .

Set the contents of register PU0 or PU1 through register A with the TPU0A or TPU1A instruction, respectively.

Table 9 Pull-down control registers

	Pull-down control register PU0		reset : 00002	at RAM back-up : state retained	W		
PU03	Ports G2, G3 pull-down transistor control	0 Pull-down transisto		or OFF, key-on wakeup invalid			
P003	bit	1	Pull-down transisto	or ON, key-on wakeup valid			
PU02	Ports G ₀ , G ₁ pull-down transistor control	0	Pull-down transistor OFF, key-on wakeup invalid				
P002	bit		Pull-down transistor ON, key-on wakeup valid				
PU01			Pull-down transistor OFF, key-on wakeup invalid				
P001	Port E1 pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid				
DUO		0	Pull-down transistor OFF, key-on wakeup invalid				
PU00	Port E ₀ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid				

Pull-down control register PU1		at reset : 00002		at RAM back-up : state retained	W		
		0	Pull-down transisto	r OFF, key-on wakeup invalid			
PU13	Port D7 pull-down transistor control bit	1	Pull-down transisto	r ON, key-on wakeup valid			
PU12	Dort Da pull down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid				
FUIZ	Port D ₆ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid				
PU11			Pull-down transistor OFF, key-on wakeup invalid				
PUII	Port D₅ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid				
DUI	Port D4 pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid				
PU10		1	Pull-down transistor ON, key-on wakeup valid				

Note: "W" represents write enabled.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- · System clock generating circuit
- · Control circuit to stop the clock oscillation
- · Control circuit to return from the RAM back-up state

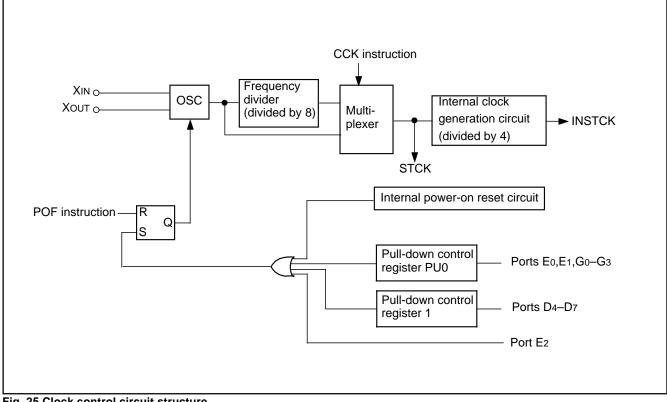


Fig. 25 Clock control circuit structure

System clock signal f(XIN) is obtained by externally connecting a ceramic resonator. Connect this external circuit to pins XIN and XOUT at the shortest distance as shown Figure 26. A feedback resistor is built-in between XIN pin and XOUT pin.

ROM ORDERING METHOD

Please submit the information described below when ordering Mask ROM.

- (1) Mask ROM Order Confirmation Form*
- (2) Mark Specification Form
- (3) Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk.
- For the mask ROM confirmation, refer to the "Mitsubishi MCU Technical Information" Homepage (http:// www.infomicom.maec.co.jp/indexe.htm).

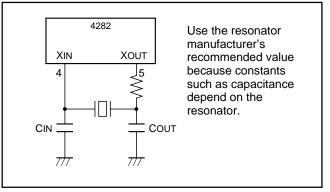


Fig. 26 Ceramic resonator external circuit

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

LIST OF PRECAUTIONS

1 Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.01 μF) between pins VDD and Vss at the shortest distance,
- equalize its wiring in width and length, and
- use the thickest wire.

In the One Time PROM version, port E₂ is also used as VPP pin. Connect this pin to Vss through the resistor about 5 k Ω which is assigned to E₂/VPP pin as close as possible at the shortest distance.

② Notes on unused pins

(Note in order to set the output latch to "0" to make pins open)

 After system is released from reset, a port is in a highimpedance state until the output latch of the port is set to "0" by software.

Accordingly, the voltage level of pins is undefined and the excess of the supply current may occur.

• To set the output latch periodically is recommended because the value of output latch may change by noise or a program run away (caused by noise).

(Note when connecting to Vss and VDD)

 Connect the unused pins to Vss and Vbb at the shortest distance and use the thick wire against noise.

3 Timer

Count source

Stop timer 1 or timer 2 counting to change its count source. Watchdog timer

Be sure that the timing to execute the WRST instruction in order to operate WDT efficiently.

- Writing to reload register R1 When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.
- Timer 1 count operation
 When the bit 5 of the watchdog timer (WDT) is selected as
 the timer 1 count source, the error of maximum ± 256 μs
 (at the minimum instruction execution time : 8 μs) is
 generated from timer 1 start until timer 1 underflow. When
 programming, be careful about this error.
- Stop of timer 2 Avoid a timing when timer 2 underflows to stop timer 2.
- Writing to reload register R2H When writing data to reload register R2H while timer 2 is operating, avoid a timing when timer underflows.
- Timer 2 carrier wave output function When to expand "H" interval of carrier wave is valid, set "1" or more to reload register R2H.

④ Program counter

Make sure that the program counter does not specify after the last page of the built-in ROM.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

INSTRUCTIONS

The 4282 Group has the 68 instructions. Each instruction is described as follows;

(1) List of instruction function

- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)
- (4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
A	Register A (4 bits)	D	Port D (8 bits)
В	Register B (4 bits)	E	Port E (3 bits)
DR	Register D (3 bits)	G	Port G (4 bits)
ER	Register E (8 bits)	CARR	Port CARR (1 bit)
V1	Timer control register V1 (3 bits)	CAR	CAR flag (1 bit)
V2	Timer control register V2 (4 bits)		
PU0	Pull-down control register PU0 (4 bits)	x	Hexadecimal variable
PU1	Pull-down control register PU1 (4 bits)	у	Hexadecimal variable
LO	Logic operation selection register LO (2 bits)	р	Hexadecimal variable
		n	Hexadecimal constant which represents the
х	Register X (2 bits)		immediate value
Y	Register Y (4 bits)	j	Hexadecimal constant which represents the
DP	Data pointer (6 bits)		immediate value
	(It consists of registers X and Y)	A3A2A1A0	Binary notation of hexadecimal variable A
PC	Program counter (11 bits)		(same for others)
РСн	High-order 4 bits of program counter		
PC∟	Low-order 7 bits of program counter	\leftarrow	Direction of data movement
SK	Stack register (11 bits X 4)	\leftrightarrow	Data exchange between a register and memory
SP	Stack pointer (2 bits)	?	Decision of state shown before "?"
CY	Carry flag	()	Contents of registers and memories
R1	Timer 1 reload register	—	Negate, Flag unchanged after executing
T1	Timer 1		instruction
T1F	Timer 1 underflow flag	M(DP)	RAM address pointed by the data pointer
R2H	Timer 2 reload register	а	Label indicating address a6 a5 a4 a3 a2 a1 a0
R2L	Timer 2 reload register	р, а	Label indicating address a6 a5 a4 a3 a2 a1 a0
T2	Timer 2		in page p3 p2 p1 p0
T2F	Timer 2 underflow flag	С	Hex. number C + Hex. number x (also same for
WDT	Watchdog timer	+	others)
WDF1	Watchdog timer flag 1	x	
WDF2	Watchdog timer flag 2		
URS	Most significant ROM code reference enable flag		
Р	Power down flag		
STCK	System clock		
INSTCK	Instruction clock		

Note : The 4282 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

LIST OF INSTRUCTION FUNCTION

Grouping	Mnemonic	Function	Page	Grouping	Mnemonic	Function	Page
	ТАВ	$(A) \leftarrow (B)$	38		LA n	$(A) \gets n$	31
	ТВА	$(B) \gets (A)$	40			n = 0 to 15	
ansfer	ΤΑΥ	$(A) \gets (Y)$	40		TABP p	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p p=0 \text{ to } 15$	39
ister tra	ΤΥΑ	$(Y) \gets (A)$	42			$(PCH) \leftarrow p p=0 \text{ to } 15$ $(PCL) \leftarrow (DR_2-DR_0, A_3-A_0)$ When URS=0	
Register to register transfer	TEAB	$(ER_7-ER_4) \leftarrow (B)$ $(ER_3-ER_0) \leftarrow (A)$	41			$\begin{array}{l} (B) \leftarrow (ROM(PC)) \texttt{7 to 4} \\ (A) \leftarrow (ROM(PC)) \texttt{3 to 0} \end{array}$	
Regist	TABE	$(B) \leftarrow (ER_7 - ER_4)$ $(A) \leftarrow (ER_3 - ER_0)$	39			When URS=1 (CY) \leftarrow (ROM(PC))8 (B) \leftarrow (ROM(PC))7 to 4 (A) \leftarrow (ROM(PC))3 to 0	
	TDA	$(DR_2-DR_0) \leftarrow (A_2-A_0)$	40			$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	
	LXY x, y	$(X) \leftarrow x, x = 0 \text{ to } 3$	31				
esses		(Y) ← y, y = 0 to 15		ation	AM	$(A) \leftarrow (A) + (M(DP))$	27
RAM addresses	INY	$(\mathbf{Y}) \leftarrow (\mathbf{Y}) + 1$	31	Arithmetic operation	AMC	$\begin{array}{l} (A) \leftarrow (A) + (M(DP)) + (CY) \\ (CY) \leftarrow Carry \end{array}$	27
<u> </u>	DEY TAM j	$(Y) \leftarrow (Y) - 1$ $(A) \leftarrow (M(DP))$	30 40	Arithme	A n	(A) ← (A) + n n = 0 to 15	27
		$(A) \leftarrow (M(DP))$ $(X) \leftarrow (X) EXOR(j)$ $j = 0 \text{ to } 3$	40		sc	h = 0 to 15 (CY) $\leftarrow 1$	35
	XAM j	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X) EXOR(j)$	43		RC	$(CY) \leftarrow 0$	33
		j = 0 to 3			SZC	(CY) = 0 ?	37
er	XAMD j	$\begin{array}{l} (A) \longleftrightarrow (M(DP)) \\ (X) \leftarrow (X) \ EXOR(j) \end{array}$	43		СМА	$(A) \leftarrow (\overline{A})$	30
· transf		$ \begin{array}{l} j=0 \text{ to } 3 \\ (Y) \leftarrow (Y)-1 \end{array} $			RAR	\rightarrow CY \rightarrow A3A2A1A0	33
RAM to register transfer	XAMI j	$\begin{array}{l} (A) \longleftrightarrow (M(DP))\\ (X) \hookleftarrow (X) EXOR(j)\\ j = 0 \text{ to } 3 \end{array}$	43		LGOP	Logic operation instruction XOR, OR, AND	31
RAI		$(Y) \leftarrow (Y) + 1$			SB j	(Mj(DP)) ← 1 j = 0 to 3	34
				Bit operation	RB j	(Mj(DP)) ← 0 j = 0 to 3	33
				Bit of	SZB j	(Mj(DP)) = 0 ? j = 0 to 3	37

Grouping	Mnemonic	Function	Page	0	Grouping	Mnemonic	Function	Page			
	SEAM	(A) = (M(DP)) ?	36			TV1A	(V12–V10) ← (A2–A0)	42			
Comparison operation	SEA n	(A) = n ? n = 0 to 15	35			TAB1	(B) ← (T17–T14) (A) ← (T13–T10)	39			
	Ва	(PCL) ← a6−a0	27			T1AB	at timer 1 stop (V1₀=0): (R17–R14) ← (B)	37			
Branch operation	BL p, a	$(PCH) \leftarrow p$ $(PCL) \leftarrow a6-a0$	28							$(T17-T14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$	
ranch c	BA a	(PC∟) ← (a ₆ –a ₄ , A ₃ –A ₀)	28				at timer 1 operating (V1 ₀ =1): (R1 ₇ -R1 ₄) \leftarrow (B)				
В	BLA p, a	(РСн) ← р (РС∟) ← (а6–а4, А3–Ао)	28			01/77/	$(R1_3-R1_0)\leftarrow(A)$	36			
	BM a	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a_{6}-a_{0}$	28	-		SNZT1	(T1F) = 1 ? After skipping the next instruction $(T1F) \leftarrow 0$	36			
ation	BML p. a	(SP) ← (SP) + 1	29		-	TV2A	(V23–V20) ← (A3–A0)	42			
Subroutine operation	$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p = 0 \text{ to } 15$ $(PCL) \leftarrow a_6-a_0$				TAB2	$\begin{array}{l} (B) \leftarrow (T27\text{-}T24) \\ (A) \leftarrow (T23\text{-}T20) \end{array}$	39				
Subro	BMLA p, a	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p p = 0 \text{ to } 15$ $(PCL) \leftarrow (a_6-a_4, A_3-A_0)$	29		Timer operation	Timer ope	T2AB	$\begin{array}{l} (\text{R2L7-R2L4}) \leftarrow (\text{B}) \\ (\text{T27-T24}) \leftarrow (\text{B}) \\ (\text{R2L3-R2L0}) \leftarrow (\text{A}) \\ (\text{T23-T20}) \leftarrow (\text{A}) \end{array}$	38		
operation	RT	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	34	-		T2HAB	$(R2H_7-R2H_4) \leftarrow (B)$ $(R2H_3-R2H_0) \leftarrow (A)$	38			
Return oper	RTS	(PC) ← (SK(SP)) (SP) ← (SP) – 1	34			T2R2L	$(T27-T24) \leftarrow (R2L7-R2L4)$ $(T27-T24) \leftarrow (R2L3-R2L0)$	38			
R						SNZT2	(T2F) = 1 ? After skipping the next instruction $(T2F) \leftarrow 0$	36			

LIST OF INSTRUCTION FUNCTION (CGroupingMnemonicFunctionCLD(D) $\leftarrow 0$ RD(D(Y)) $\leftarrow 0$ (Y) = 0 to 7	Page 29 34 35	
RD $(D(Y)) \leftarrow 0$	34	
	35	
SD $(D(Y)) \leftarrow 1$ (Y) = 0 to 7		
$\begin{array}{c} \begin{matrix} v_{T}\\ v_{v$	37	
$\left \begin{array}{c} O \\ O \\ H \\$	32	
$ \begin{array}{ c c } \blacksquare & \\ \\ \\ \\ \\ \\ \\ \\ \\ $	30	
OGA $(G) \leftarrow (A)$	32	
IAG $(A) \leftarrow (G)$	30	
SCAR (CAR) ← 1	35	
Carrier wave control operation oper	33	
NOP (PC) ← (PC) + 1	32	
POF RAM back-up	32	
SNZP (P) = 1 ?	36	
CCK STCK changes to f(XIN)	29	
$\begin{bmatrix} c \\ c $	41	
$\begin{bmatrix} b \\ \pm \\ O \end{bmatrix} URSC (URS) \leftarrow 1$	42	
TPU0A (PU03–PU00) ← (A3–A0)	41	
TPU1A (PU13–PU10) ← (A3–A0)	41	
WRST (WDF1) $\leftarrow 0$	43	

MITSUBISHI MICROCOMPUTERS

4282 Group

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

A n (Add n	and accumulator)					
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 1 0 1 0 n3 n2 n1 n0 2	0 A n 16	words 1	cycles 1	_	Overflow = 0
Operation:	$(A) \leftarrow (A) + n$ n = 0 to 15 ccumulator and Memory)		Grouping: Description	Arithmetic Adds the v register A. The conter changed. Skips the r	operation value n in t nts of carry	the immediate field to y flag CY remains un- ction when there is no of operation.
Instrunction code	D8 D0 0 0 0 0 1 0 1 0	0 0 A ₁₆	Number of words	Number of cycles 1	Flag CY -	Skip condition
Operation:	(A) ← (A) + (M(DP))		Grouping: Description	Stores the	contents of result in re	f M(DP) to register A. egister A. The contents ins unchanged.
AMC (Add a	accumulator, Memory and Carry)					
Instrunction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 B ₁₆	Number of words	Number of cycles	Flag CY 0/1	Skip condition
Operation:	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$		Grouping: Description		contents of ster A. Sto	M(DP) and carry flag res the result in regis- Y.
B a (Branch	n to address a)					
Instrunction code	D8 D0 1 1 a6 a5 a4 a3 a2 a1 a0	1 8 a +a a 16	Number of words	Number of cycles 1	Flag CY	Skip condition
Operation:	(PCL) ← a6–a0		Grouping: Description:	Branch ope Branch with a in the ide	nin a page	: Branches to address

BA a (Bran	ch to address a + Accumulator)					
Instrunction code	D8 D0 0 0 0 0 0 0 0 0 1	0 0 1	Number of words	Number of cycles	Flag CY	Skip condition
	1 1 a6 a5 a4 a3 a2 a1 a0 2	$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 8 \\ +a & a \end{bmatrix}_{16}$	2	2	-	-
Operation:	(PCL) ← a6–a4, A3–A0		Grouping: Description	(a6 a5 a4 A ing the low	hin a page 3 A2 A1 A0) 2-order 4 b	: Branches to address determined by replac- its of the address a in h register A.
BL p. a (Br	anch Long to address a in page p)					
Instrunction code	D8 D0	0 3 p ₁₆	Number of words	Number of cycles	Flag CY	Skip condition
	$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ a6 \end{bmatrix} \begin{bmatrix} a5 \\ a4 \end{bmatrix} \begin{bmatrix} a4 \\ a3 \end{bmatrix} \begin{bmatrix} a2 \\ a1 \end{bmatrix} \begin{bmatrix} a6 \\ a5 \end{bmatrix} \begin{bmatrix} a4 \\ a3 \end{bmatrix} \begin{bmatrix} a2 \\ a1 \end{bmatrix} \begin{bmatrix} a6 \\ a5 \end{bmatrix} \begin{bmatrix} a4 \\ a3 \end{bmatrix} \begin{bmatrix} a2 \\ a1 \end{bmatrix} \begin{bmatrix} a6 \\ a5 \end{bmatrix} \begin{bmatrix} a4 \\ a3 \end{bmatrix} \begin{bmatrix} a2 \\ a1 \end{bmatrix} \begin{bmatrix} a6 \\ a5 \end{bmatrix} \begin{bmatrix} a4 \\ a3 \end{bmatrix} \begin{bmatrix} a2 \\ a1 \end{bmatrix} \begin{bmatrix} a6 \\ a5 \end{bmatrix} \begin{bmatrix} a4 \\ a3 \end{bmatrix} \begin{bmatrix} a2 \\ a1 \end{bmatrix} \begin{bmatrix} a6 \\ a5 \end{bmatrix} \begin{bmatrix} a4 \\ a3 \end{bmatrix} \begin{bmatrix} a2 \\ a1 \end{bmatrix} \begin{bmatrix} a6 \\ a5 \end{bmatrix} \begin{bmatrix} a4 \\ a3 \end{bmatrix} \begin{bmatrix} a2 \\ a1 \end{bmatrix} \begin{bmatrix} a6 \\ a5 \end{bmatrix} \begin{bmatrix} a4 \\ a3 \end{bmatrix} \begin{bmatrix} a2 \\ a1 \end{bmatrix} \begin{bmatrix} a6 \\ a5 \end{bmatrix} \begin{bmatrix} a4 \\ a3 \end{bmatrix} \begin{bmatrix} a2 \\ a1 \end{bmatrix} \begin{bmatrix} a6 \\ a5 \end{bmatrix} \begin{bmatrix} a4 \\ a3 \end{bmatrix} \begin{bmatrix} a4 \\ a3 \end{bmatrix} \begin{bmatrix} a2 \\ a1 \end{bmatrix} \begin{bmatrix} a6 \\ a5 \end{bmatrix} \begin{bmatrix} a4 \\ a3 \end{bmatrix} \begin{bmatrix} a4 \\ a5 \end{bmatrix} \begin{bmatrix} a4 \\ $		2	2	-	-
Operation:	$(PCH) \leftarrow (P)$ $(PCL) \leftarrow a6-a0$	<u>1</u> + <u>a</u> 16	Grouping: Description Note:	Branch ope Branch out a in page p p is 0 to 7 f p is 0 to 15	of a page o. for M34282	,
	Branch Long to address a in page p)				EL OY	
Instrunction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 0 16	Number of words	Number of cycles	Flag CY	Skip condition
	1 1 a6 a5 a4 p3 p2 p1 p0 2	1 8 p 16	2	2	_	
Operation:	(PCH) ← (P) (PCL) ← (a6–a4, A3–A0)		Grouping: Description Note:	(a6 a5 a4 A	hin a page 3 A2 A1 A0) 7-order 4 b 1 register A for M34282	2M1,
BM a (Bran	ch and Mark to address a in page 2)					
Instrunction code	D8 D0 1 0 a6 a5 a4 a3 a2 a1 a0 2	1 a a ₁₆	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	_
Operation:	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a6-a0$		Grouping: Description		ubroutine	tion in page 2 : Calls the s a in page 2.

MITSUBISHI MICROCOMPUTERS

4282 Group

BIVIL p, a (E	Branch and Mark Long to address a in page p)	Number of	Number of	Flog CV	Skin condition
code	D8 D0 0 0 1 1 1 p3 p2 p1 p0 2 0 7 p 16	words	cycles	Flag CY	Skip condition
		2	2	-	-
	1 0 a6 a5 a4 a3 a2 a1 a0 2 1 a a 16	Grouping:	Subroutine	e call opera	ation
Operation:	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow p$ $(PCL) \leftarrow a6-a0$	Description		ibroutine : in page p. for M3428	Calls the subroutine at 2M1,
BMI A n a	(Branch and Mark Long to address a in page p)				
Instrunction code	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 a6 a5 a4 p3 p2 p1 p0 2 1 a p 16				
		Grouping: Description	Subroutine		ation Calls the subroutine at
Operation:	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow p$	Description	address (a by replacir	a6 a5 a4 A3 ng the low-	A2 A1 A0) determined order 4 bits of address
	(PCL) ← (a6–a4, A3–A0)	Note:	a in page p p is 0 to 7 p is 0 to 15	for M3428	2M1,
CCK (Chan	ge system Clock to f(XIN))				
Instrunction code	D8 D0 0 0 1 0 1 1 0 0 1 0 5 9	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	Change to STCK = f(XIN)	Grouping:	Other oper	ration	
		Descriptior	-	xecute this	k (STCK) from f(XIN)/8 s instruction at address
CLD (CLea	r port D)				
Instrunction code		Number of words	Number of cycles	Flag CY	Skip condition
Couc		1	1	-	_
Operation:	(D) ← 1	Grouping: Descriptior	Input/Outp n: Clears (0)		high-impedance state).

CMA (CoM	plement of Accumulator)					
Instrunction code	D8 D0 0 0 0 0 1 1 1 0 0	0 1 C ₁₆	Number of words	Number of cycles	Flag CY	Skip condition
		0 1 0 16	1	1	-	_
Operation:	$(A) \leftarrow \overline{(A)}$		Grouping:	Arithmetic	operation	
					one's co	mplement for register er A.
DEY (DEcre	ement register Y)					
Instrunction code	D8 D0 0 0 0 0 1 0 1 1 1	0 1 7	Number of words	Number of cycles	Flag CY	Skip condition
		0 1 / 16	1	1	-	(Y) = 15
Operation:	$(Y) \leftarrow (Y) - 1$		Grouping:	RAM addre	esses	
			Description	As a resul	t of subtra gister Y is ²	contents of register Y. action, when the con- 15, the next instruction
IAE (Input A	Accumulator from port E)					
Instrunction code	D8 D0	0 5 6	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	_
Operation:	$(A_2-A_0) \leftarrow (E_2-E_0)$		Grouping: Input/Output operation			
			Description	: Transfers t A.	the conten	ts of port E to register
IAG (Input /	Accumulator from port G)					
Instrunction code	D8 D0 0 0 0 1 0 1 0 0 0	0 2 8 16	Number of words	Number of cycles	Flag CY	Skip condition
		0 2 0 16	1	1	-	-
Operation:	$(A) \leftarrow (G)$		Grouping:	Input/Outp	ut operatio	n
						ts of port G to register

MITSUBISHI MICROCOMPUTERS

4282 Group

INY (INcrer	nent register Y)						
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition	
code			words	cycles	T lag CT	Skip condition	
couc	0 0 0 0 1 0 0 1 1	0 1 3 16	1	1	-	(Y) = 0	
Operation:	$(Y) \leftarrow (Y) + 1$		Grouping:	RAM addre	esses		
-				: Adds 1 to t	he content	s of register Y. As a re-	
				sult of ac	ldition, w	hen the contents of	
				register Y	' is 0, th	e next instruction is	
				skipped.			
	n in Accumulator)						
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition	
code	0 1 0 1 1 n3 n2 n1 n0 2	0 B n ₁₆					
			1	1	-	Continuous description	
Operation:	$(A) \gets n$		Grouping:	Arithmetic	operation	decemption	
operation	n = 0 to 15				the immediate field to		
			register A.				
		When the LA instructions are continuously					
			coded and executed, only the first L/ struction is executed and other				
			instructions coded continuously are				
				skipped.			
LGOP (Loc	Gic OPeration between accumulator	and register E)					
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition	
code	0 0 1 0 0 0 0 0 1 2	0 4 1 16	words	cycles			
			1	1	-	-	
Operation:	Logic operation XOR, OR, AND		Grouping: Arithmetic operation				
			Description	: Executes	the logic of	operation selected by	
				logic oper	ation sele	ction register LO be-	
						s of register A and	
				-	and store	s the result in register	
				Α.			
	oad register X and Y with x and y)						
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition	
code			words	cycles	i lag o i	onp contaition	
oouc	0 1 1 x1 x0 y3 y2 y1 y0 2	0 C y 16	1	1	-	Continuous	
Operation:	$(X) \leftarrow x, x = 0 \text{ to } 3$		0	DAM - data		description	
Operation.	$(X) \leftarrow X, X = 0.003$ $(Y) \leftarrow Y, Y = 0 \text{ to } 15$		Grouping:	RAM addre		the immediate field to	
	$(1) \leftarrow y, y = 0.013$		Description			alue y in the immediate	
				•		/hen the LXY instruc-	
						y coded and executed,	
						struction is executed,	
						ictions coded continu-	
				ously are s			
			1	•			

NOP (No C	Peration)		1				
Instrunction code	D8 D0	0 0 0 16	Number of words	Number of cycles	Flag CY	Skip condition	
		0 0 0 16	1	1	-	-	
Operation:	$(PC) \leftarrow (PC) + 1$		Grouping:	Other oper			
		Description	: No operati	on			
OEA (Outp	ut port E from Accumulator)						
Instrunction code	D8 D0 0 1 0 0 0 1 0 0	0 8 4	Number of words	Number of cycles	Flag CY	Skip condition	
		0 0 4 16	1	1	-	_	
Operation:	(E1, E0) ← (A1, A0)		Grouping:	Input/Outp	ut operatio	n	
			Description: Outputs the contents of register A to por			of register A to port E.	
OGA (Outp	ut port G from Accumulator)						
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition	
code	0 1 0 0 0 0 0 0 0 0 0	0 8 0 16	1	1	-	_	
Operation:	$(G) \gets (A)$		Grouping:	Input/Outp			
			Description: Outputs the contents of register A to port G.				
POF (Powe			1	I	1 1		
Instrunction code			Number of words	Number of cycles	Flag CY	Skip condition	
coue	0 0 0 0 0 1 1 2 2	0 0 D ₁₆	1	1	-	_	
Operation:	RAM back-up		Grouping:	Other oper	ation		
			Description	: Puts the sy	/stem in R/	AM back-up state.	

MITSUBISHI MICROCOMPUTERS

4282 Group

	te Accumulator Right)				,	
Instrunction code	D8 D0 0 0 0 0 1 1 0 1	0 1 D 16	Number of words	Number of cycles	Flag CY	Skip condition
		0 1 D 16	1	1	0/1	-
Operation:	→CY]→A3A2A1A0		Grouping: Description		oit of the co	ontents of register A in- of carry flag CY to the
RB j (Rese	t Bit)					
Instrunction code	D8 D0	0 4 C +j 16	Number of words	Number of cycles	Flag CY	Skip condition
		0 4 + 1	1	1	-	_
Operation:	$(Mj(DP)) \leftarrow 0$	Grouping:	Bit operation	on		
	j = 0 to 3		Description			ts of bit j (bit specified e immediate field) of
RC (Reset	Carry flag)					
Instrunction code	D8 D0	0 0 6	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	0	_
Operation:	$(CY) \leftarrow 0$		Grouping: Description	Arithmetic Clears (0)		g CY.
RCAR (Res	set CAR flag)					
Instrunction code	D8 D0 0 1 0 0 0 1 1 0	0 8 6 16	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	_
Operation:	(CAR) ← 0		Grouping: Description	Carrier way Clears (0)		operation RR output flag.

RD (Reset	port D specified by register Y)					
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 1 0 0 2	0 1 4 16	words 1	cycles 1	_	
Operation:	$(D(Y)) \leftarrow 0$		Grouping:	Input/Outp		
	However, (Y) = 0 to 7		Description	: Clears (0) ister Y (hig		port D specified by reg- ace state).
RT (ReTurr	n from subroutine)					
Instrunction code	D8 D0	0 4 4	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	2	-	_
Operation:	$(SP) \gets (SP) - 1$		Grouping:	Return ope	eration	
	(PC) ← (SK(SP))		Description	: Returns find the state of the		outine to the routine
	rn form subroutine and Skip)					
Instrunction code	D8 D0 0 0 1 0 1 0 1 2	0 4 5 16	Number of words	Number of cycles	Flag CY	Skip condition
			1	2	-	Skip at uncondition
Operation:	$(SP) \gets (SP) - 1$		Grouping:	Return ope		
	(PC) ← (SK(SP))		Description		subroutine	outine to the routine , and skips the next in- on.
SB j (Set B	it)		1			
Instrunction code	D8 D0 0 0 1 0 1 1 1 j1 j0	0 5 C +j 16	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 1 0 1 1 <u>1</u> <u>j</u>	0 <u>5 +j</u> 16	1	1	-	_
Operation:	$(Mj(DP)) \leftarrow 0$		Grouping:	Bit operation	, on	
-	j = 0 to 3		Description			of bit j (bit specified by rediate field) of M(DP).

MITSUBISHI MICROCOMPUTERS

4282 Group

SC (Set Ca	rry flag)						
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition	
code	0 0 0 0 0 0 1 1 1 2	0 0 7	words	cycles			
		16	1	1	1	-	
Operation:	(CY) ← 1		Grouping:	Arithmetic	operation		
				: Sets (1) to		CY.	
SCAR (Set	CAR flag)						
Instrunction code	D8 D0 0 1 0 0 0 0 1 1 1	0 8 7	Number of words	Number of cycles	Flag CY	Skip condition	
		0 0 1 16	1	1	-	-	
Operation:	$(CAR) \leftarrow 1$		Grouping: Carrier wave control operation Description: Sets (1) to port CARR output flag (CAR)			operation	
						R output flag (CAR).	
SD (Set por Instrunction code	Ds D0 0 0 0 1 0 1 1 2	0 1 5 16	Number of words	Number of cycles 1	Flag CY	Skip condition	
Operation:	$(D(Y)) \leftarrow 1$		Grouping:	Input/Outp	ut operatio	n	
operation.	(Y) = 0 to 7		Description: Sets (1) to a bit of port D specified by regis-				
				ter Y.			
	p Equal, Accumulator with immediate	data n)		1			
Instrunction	D8 D0	[]	Number of words	Number of cycles	Flag CY	Skip condition	
code		0 2 5 16	2	2	-	(A) = n, n = 0 to 15	
	0 1 0 1 1 n3 n2 n1 n0 2	0 B n 16	0	0			
Operation:			Grouping:	Compariso		n uction when the con-	
Operation.	(A) = n ? n = 0 to 15				gister A is	equal to the value n in	

SEAM (Skin	p Equal, Accumulator with Memory)					
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code			words	cycles	Flag C1	Skip condition
COUE	0 0 0 1 0 0 1 0 2	0 2 6 16	1	1	-	(A) = (M(DP))
Operation:	(A) = (M(DP)) ?		Grouping:	Compariso	n operatio	 n
	() ((=))) .		Description			uction when the con-
				•		equal to the contents of
SNZP (Skip	if Non Zero condition of Power dow	n flag)				
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 1	0 0 3 16	words 1	cycles 1	_	(P) = 1
						. ,
Operation:	(P) = 1 ?	Grouping: Description	Other oper		tion when P flag is "1".	
						remains unchanged.
SNZT1 (Sk	ip if Non Zero condition of Timer 1 u	nderflow flag)	1			
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code	$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}_2$	0 4 2 16	1	1	-	(T1F) = 1
Operation:	(T1F) = 1 ?		Grouping:	Timer oper	ation	
	After skipping, (T1F) $\leftarrow 0$		Description	: Skips the	next instr	uction when the con-
				tents of T1 After skipp		." (0) to T1F flag.
SNZT2 (Sk	ip if Non Zero condition of Timer 2 in	errupt request	flag)			
Instrunction code	D8 D0 0 0 1 0 1 0 1 0	0 5 2 16	Number of words	Number of cycles	Flag CY	Skip condition
0000		0 5 2 16	1	1	-	(T2F) = 1
Operation:	(T2F) = 1 ?		Grouping:	Timer oper	ation	
	After skipping, (T2F) \leftarrow 0		Description	tents of T2	F flag is "1	uction when the con- ." (0) to T2F flag.

4282 Group

SZB i (Skip	if Zero, Bit)					
Instrunction code		1	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 0 j1 j0 2 0 2 j	16	1	1	-	(Mj(DP)) = 0 j = 0 to 3
Operation:	(Mj(DP)) = 0 ? j = 0 to 3		Grouping: Description	tents of bi	next instr t j (bit spe	uction when the con- cified by the value j in of M(DP) is "0."
SZC (Skip i	f Zero, Carry flag)					
Instrunction code	D8 D0]	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	(CY) = 0
Operation:	(CY) = 0 ?		Grouping: Description	Arithmetic Skips the tents of ca	next instr	uction when the con-
SZD (Skip i	f Zero, port D specified by register Y)					
Instrunction code	D8 D0 D0 0 1 0 0 1 0 0 2 4	1	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 1 0 1 0 1	_16 	2	2	_	(D(Y)) = 0 (Y) = 4 to 7
Operation:	(D(Y)) = 0 ? (Y) = 4 to 7		Grouping: Description	Input/Outp Skips the i D specified	next instru	ction when a bit of port
T1AB (Tran	nsfer data to timer 1 and register R1 from Accum	ula	tor and reg	ister B)		
Instrunction code	D8 D0 0 0 1 0 0 0 1 1 1 0 0 4 7	1	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	-
Operation:	at timer 1 stop (V10=0) (R17-R14) \leftarrow (B), (R13-R10) \leftarrow (A) (T17-T14) \leftarrow (B), (T13-T10) \leftarrow (A) at timer 1 operating (V10=1) (R17-R14) \leftarrow (B), (R13-R10) \leftarrow (A)		Grouping: Description	tents of re and reload At timer 1	stop (V10 gister A ar I register R operating of register	= 0), transfers the con- id register B to timer 1 1. (V10 = 1), transfers the A and register B to re-

4282 Group

T2AB (Trar	nsfer data to timer 2 and register R2I	from Accumula	ator and re	aister B)		
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code		0 8 8 16	words	cycles		
		16	1	1	-	-
Operation:	$(R2L7-R2L4) \leftarrow (B)$		Grouping:	Timer oper	ation	
	$(R2L3-R2L0) \leftarrow (A)$		Description	: Transfers t	the content	s of registers A and B
	(T27−T24) ← (B)		-			reload register R2L.
	$(T23-T20) \leftarrow (A)$					C C
T2HAB (Tra	ansfer data to register R2H Accumul	ator from regist	er B)			
Instrunction code	D8 D0	0 8 9 16	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	-
Operation:	(R2H7–R2H4) ← (B)		Grouping:	Timer oper	ation	
	(R2H3–R2H0) ← (A)		Description	: Transfers	the conte	nts of register A and
				register B t	to reload re	egister R2H.
TODOL /Tra	noton data ta timan O fram na sister D					
	insfer data to timer 2 from register R	2L)				
Instrunction			Number of words	Number of cycles	Flag CY	Skip condition
code	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 5 3 16	1	1	-	_
Operation:	(T27–T24) ← (R2L7–R2L4)		Grouping:	Timer oper	ation	
-	$(T23-T20) \leftarrow (R2L3-R2L0)$: Transfers	the conter	nts of reload register
				R2L to time	er 2.	
TAB (Trans	fer data to Accumulator from registe	er B)	•			
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 1 1 0 2	0 1 E 16	words	cycles		
			1	1	-	-
Operation:	$(A) \leftarrow (B)$		Grouping:	Register to	register tr	ansfer
oporation						ts of register B to reg-
				ister A.		0 0

4282 Group

TAB1 (Tran	sfer	⁻ dat	a to	Accu	mula	ator a	and	reg	ister	[.] B fı	rom	tim	ner	1)					
Instrunction	D8							D0						Number of	Number of	Flag CY	Skip condition		
code	0	0	1	0 1	0	1	1	1		0	5	7		words	cycles				
	L-							:	2		-		_16	1	1	-	_		
Operation:	(B)	← (T	17–1	-14)										Grouping:	Timer oper	ation			
operation		() ← (T												Description: Transfers the contents of timer 1 to regis-					
	()	. (.		,										2000.1010	ters A and				
TAB2 (Tran	sfer	. dat	a to	Асси	mula	ator a	and	rea	ister	Bfr	om	tim	ner	2)					
Instrunction	D8							<u>-</u> Do						Number of	Number of	Flag CY	Skip condition		
code	0	0	1	0 0	0	0			2	0	4	0	16	words	cycles				
				•	•				-					1	1	-	_		
Operation:	(B)	← (T	27–1	24)										Grouping:	Timer oper	ation			
	(A)	← (T	23 – T	20)										Description	: Transfers ters A and		ts of timer 2 to regis-		
TABE (Tran Instrunction code	D8 0		a to 0	Accu 1 0	ımula 1		1	20 20	ister	r B fi	rom 2	reç A	giste	er E) Number of words	Number of cycles 1	Flag CY –	Skip condition		
Operation:		← (E												Grouping:	Register to	register tra	ansfer		
	(A)	← (E	R3–I	ERo)										Description	: Transfers t isters A and		s of register E to reg-		
TABP p (Tra	anst	fer d	ata	to Ac	cum	ulato	r an	d re	eaist	ter E	s fro	m I	Pro	aram memo	orv in page	(a			
Instrunction	D8							D0	_ <u>_</u>					Number of	Number of	Flag CY	Skip condition		
code	0	1	0	0 1	рз	p2		20		0	9	р	7	words	cycles	, ag e i			
	Ŭ		U		100	P2	P' I	2	2	<u> </u>	0	٢	_16	1	3	- 0/1	-		
Operation:	SK(SP))	← (F	PC),(\$	SP) ←	- (SP)	+ 1							Grouping:	Arithmetic				
	(PC	н) ←	p, p	= 0 to	7, (P	CL) ←	(DR:	2-D	R0, A	3 —A 0))			Description					
		en Ul														gister B an	d bits 3 to 0 to register		
					o 4, (A	A) ← (I	ROM	(PC))3 to	0				A when URS flag is cleared to "0." These bits 7 to 0 are the					
		When URS = 1, $(CX) \leftarrow (POM(PC))_{2}$											ROM pattern in address (DR2 DR1 DR0 A3 A2 A1 A0) speci-						
	`	$(CY) \leftarrow (ROM(PC))_8$											fied by registers A and D in page p.						
	$(SP) \leftarrow (SP) - 1, (PC) \leftarrow (SK(SP))$										Transfers bit 8 of ROM pattern is transferred to flag CY when								
Note:				M342			,,							-			instruction is executed).		
	p is	0 to	15 fo	r M34	282M	2/E2.								One of stack	is used when	the TABP p	instruction is executed.)		

TAM i (Trar	nsfer data to Accumulator from Mem	orv)				
Instrunction code	D8 D0 0 0 1 1 0 0 1 j1 j0	$\begin{bmatrix} 0 & 6 & 4 \\ 4 & 16 \end{bmatrix}_{16}$	Number of words	Number of cycles	Flag CY	Skip condition
		0 0 4 j 16	1	1	-	-
Operation:	$(A) \leftarrow (M(DP))$		Grouping:	RAM to reg	gister trans	fer
	$(X) \leftarrow (X)EXOR(j)$ j = 0 to 3		Description	register A performed	, an exclu between re mediate fie	contents of M(DP) to sive OR operation is egister X and the value eld, and stores the re-
TAY (Trans	fer data to Accumulator from registe	rY)				
Instrunction code	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	_
Operation:	$(A) \gets (Y)$		Grouping:	Register to		
			Description	: Transfers t ter A.	he content	s of register Y to regis-
TBA (Trans	sfer data to register B from Accumula	ator)		1		
Instrunction code	D8 D0	0 0 E 16	Number of words	Number of cycles	Flag CY	Skip condition
	L		1	1	-	_
Operation:	$(B) \gets (A)$		Grouping:	Register to		
			Description	: Transfers t ter B.	he content	s of register A to regis-
TDA (Trans	sfer data to register D from Accumula	ator)				
Instrunction code	D8 D0 0 0 0 1 0 1 0 0 1	0 2 9	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	_
Operation:	(DR2–DR0) ← (A2–A0)		Grouping: Description	Register to Transfers t ter D.		ansfer s of register A to regis-

4282 Group

TEAB (Trar	nsfer d	ata to	o regis	ter E	from	Acc	umul	ator	and r	egist	er B)			
Instrunction	D8				-	Do				- 0	Number of	Number of	Flag CY	Skip condition
code	0 0	0	0 1	1	0 1			0	1	A 16	words	cycles		
				<u> </u>			2	0		16	1	1	-	-
Operation:	(ER7–I	ER4) <	– (B)								Grouping:	Register to	o register tr	ansfer
operation	(ER3–I										Description		-	nts of register A and
	(()									register B		-
TLOA (Trar	nsfer da	ata to	o regis	ter L	O fro	m Ac	cum	ulato	r)					
Instrunction code	D8	4	0 1		0 0	D0					Number of words	Number of cycles	Flag CY	Skip condition
oode	0 0	1	0 1	1	0 0	0	2	0	5 8	316	1	1	-	_
Operation:	(LO1, L	.O0) ←	– (A1, A	0)							Grouping:	Other oper	ation	
-											Description	: Transfers	the conten	ts of register A to logic
												operation s	selection re	egister LO.
TPU0A (Tra	ansfer	data	to rea	ster	PU0	from	Acci	imula	ator)					
Instrunction	D8					Do					Number of	Number of	Flag CY	Skip condition
code	0 1	0	0 0	1	1 1	-		0	8 1	_	words	cycles		enip contaition
couc		0	0 0			1	2	0	0	F16	1	1	-	-
Operation:	(PU03-	-PU00) ← (A3	—A0)							Grouping:	Other oper	ration	
											Description	: Transfers	the conten	ts of register A to pull-
												up control		
												•	0	
TPU1A (Tra	ansfer	data	to real	stor	PI I1	from	Δοοι	imula	ator)					
Instrunction	D8	aalu		5.01		D0	,				Number of	Number of	Flag CY	Skip condition
code						-	1			_]	words	cycles	i lag O i	Skip condition
coue	0 1	0	0 0	1	1 1	0	2	0	8 I	E16	1	1	_	_
											1	1		_
Operation:	(PU13-	-PU10) ← (A3	–A0)							Grouping:	Other oper	ration	
•	,		, (,							Description			ts of register A to pull-
												up control		•
														-

TV1A (Trar	sfer data to register V1 from Accum	ulator)				
Instrunction code	D8 D0 0 0 1 0 1 0 1 1 1	0 5 B	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	-
Operation:	(V12–V10) ← (A2–A0)		Grouping:	Timer oper	ation	
			Description	: Transfers t ter V1.	he content	s of register A to regis-
TV2A (Trar	nsfer data to register V2 from Accum	ulator)				
Instrunction code	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
		0 5 A 16	1	1	-	_
Operation:	(V23–V20) ← (A3–A0)		Grouping:	Timer oper	ation	
						s of register A to regis-
	fer data to regiser Y from Accumulat	or)				
Instrunction code	D8 D0	0 0 C 16	Number of words	Number of cycles	Flag CY	Skip condition
		0 0 0 16	1	1	-	_
Operation:	$(Y) \gets (A)$		Grouping:	Register to	register tra	ansfer
			Description	: Transfers t ter Y.	he content	s of register A to regis-
URSC (Sets	s Upper ROM Code reference enable	e flag)		-		
Instrunction code	D8 D0	0 8 2 16	Number of words	Number of cycles	Flag CY	Skip condition
		0 0 2 16	1	1	-	_
Operation:	(URS) ← 1		Grouping: Description	Other oper Sets the m ence enabl	iost signific	cant ROM code refer- S) to "1."

4282 Group

	tchdog timer ReSeT)								
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition			
code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 F 16	1	1	_	_			
Operation:	$(WDF1) \leftarrow 0$		Crouning	Other anar					
Operation.	$(WDFT) \leftarrow 0$		Grouping: Other operation Description: Initializes the watchdog timer flag (WDF1).						
XAM j (eXc	hange Accumulator and Memory da	ita)	•						
Instrunction code	D8 D0 0 0 1 1 0 0 0 j1 j0 2	0 6 j	Number of words	Number of cycles	Flag CY	Skip condition			
		16 0 1 16	1	1	-	-			
Operation:	$(A) \leftarrow \rightarrow (M(DP))$		Grouping:	RAM to rec	gister trans	sfer			
	$(X) \leftarrow (X) EXOR(j)$		Description	: After exch	nanging th	e contents of M(DP)			
	j = 0 to 3					egister A, an exclusive			
						ormed between regis-			
					-	in the immediate field, in register X.			
					the result				
XAMD i (e)	Change Accumulator and Memory of	lata and Decren	nent registe	er Y and sk	ip)				
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition			
code	0 0 1 1 0 1 1 j1 j0 2	0 6 C +j 16	words	cycles					
			1	1	-	(Y) = 15			
Operation:	$(A) \longleftrightarrow (M(DP))$		Grouping:	RAM to reg					
	$(X) \leftarrow (X) EXOR(j)$		Description	: After exch	anging th	e contents of M(DP) egister A, an exclusive			
	j = 0 to 3					ormed between regis-			
	$(Y) \leftarrow (Y) - 1$			ter X and t	he value j	in the immediate field,			
						in register X. contents of register Y.			
				As a resul	t of subtra	action, when the con-			
				tents of reg is skipped.	gister Y is ?	15, the next instruction			
XAMI i (eX	change Accumulator and Memory da	ata and Increme	nt register)				
Instrunction	D8 D0		Number of	Number of	, Flag CY	Skip condition			
code	0 0 1 1 0 1 0 j1 j0 ₂	0 6 8 +j 16	words	cycles					
			1	1	-	(Y) = 0			
Operation:	$(A) \longleftrightarrow (M(DP))$		Grouping:	RAM to rec					
	$(X) \leftarrow (X) EXOR(j)$		Description			e contents of M(DP) egister A, an exclusive			
	j = 0 to 3					ormed between regis-			
	$(Y) \leftarrow (Y) + 1$					in the immediate field,			
						in register X. s of register Y. As a re-			
				sult of ad	ldition, w	hen the contents of			
				register Y skipped.	is 0, the	e next instruction is			
			1	skippeu.					

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS (INDEX BY FUNCTION)

Paramete	r					Ir	nstru	ictio	n co	de				er of Is	er of es		
Type of instructions	Mnemonic	D8	D7	D6	D5	D4	D3	D2	D1	Do	Hexa no	adeo otati	imal on	Number of words	Number of cycles	Function	
	ТАВ	0	0	0	0	1	1	1	1	0	0	1	Е	1	1	$(A) \leftarrow (B)$	
er	тва	0	0	0	0	0	1	1	1	0	0	0	Е	1	1	$(B) \gets (A)$	
r transl	ΤΑΥ	0	0	0	0	1	1	1	1	1	0	1	F	1	1	$(A) \gets (Y)$	
registe	ΤΥΑ	0	0	0	0	0	1	1	0	0	0	0	С	1	1	$(Y) \gets (A)$	
Register to register transfer	ТЕАВ	0	0	0	0	1	1	0	1	0	0	1	A	1	1	$(ER_7-ER_4) \leftarrow (B) \ (ER_3-ER_0) \leftarrow (A)$	
Regi	TABE	0	0	0	1	0	1	0	1	0	0	2	A	1	1	$(B) \leftarrow (ER_7 - ER_4) \ (A) \leftarrow (ER_3 - ER_0)$	
	TDA	0	0	0	1	0	1	0	0	1	0	2	9	1	1	$(DR_2-DR_0) \leftarrow (A_2-A_0)$	
	LXY x, y	0	1	1	X 1	X 0	уз	y 2	y 1	yo	0	C +x	-	1	1	$ \begin{array}{l} (X) \leftarrow x, x = 0 \text{ to } 3 \\ (Y) \leftarrow y, y = 0 \text{ to } 15 \end{array} $	
RAM addresses	INY	0	0	0	0	1	0	0	1	1	0	1	3	1	1	(Y) ← (Y) + 1	
R/	DEY	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$	
	TAM j	0	0	1	1	0	0	1	j1	jo	0	6	4 +j	1	1	$\begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X) \; EXOR(j) \\ j = 0 \; to \; 3 \end{array}$	
ransfer	XAM j	0	0	1	1	0	0	0	j1	jo	0	6	j	1	1	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X) \; EXOR(j) \\ j = 0 \; to \; 3 \end{array}$	
RAM to register transfer	XAMD j	0	0	1	1	0	1	1	j1	jo	0	6	C +j	1		$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X) \; EXOR(j) \\ j = 0 \; to \; 3 \\ (Y) \leftarrow (Y) - 1 \end{array}$	
	XAMI j	0	0	1	1	0	1	0	j1	jo	0	6	8 +j	1	1	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X) \; EXOR(j) \\ j = 0 \; to \; 3 \\ (Y) \leftarrow (Y) + 1 \end{array}$	

	_	
Skip condition	Carry flag CY	Detailed description
-	-	Transfers the contents of register B to register A.
-	-	Transfers the contents of register A to register B.
-	-	Transfers the contents of register Y to register A.
-	-	Transfers the contents of register A to register Y.
_	-	Transfers the contents of registers A and B to register E.
-	-	Transfers the contents of register E to registers A and B.
-	-	Transfers the contents of register A to register D.
Continuous	-	Loads the value x in the immediate field to register X, and the value y in the immediate field to register
description		Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
(Y) = 0	-	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped.
(Y) = 15	-	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped.
_	-	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
-	-	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	-	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped.
(Y) = 0	-	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Parameter			Instruction code											er of Is	er of es	
Type of instructions	Mnemonic	D8	D7	D6	D5	D4	D3	D2	D1	Do	Hexa no	adec otati	imal on	Number of words	Number o cycles	Function
	LA n	0	1	0	1	1	nз	N2	N 1	n 0	0	в	n	1	1	(A) ← n n = 0 to 15
	TABP p	0	1	0	0	1	рз	p2	p1	po	0	9	p	1		$\begin{split} (SK(SP)) &\leftarrow (PC) \\ (SP) &\leftarrow (SP) + 1 \\ (PCH) &\leftarrow p, p{=}0 \text{ to } 7 \text{ (Note)} \\ (PCL) &\leftarrow (DR_2{-}DR_0, A_3{-}A_0) \\ \text{When URS}{=}0, \\ (B) &\leftarrow (ROM(PC))_7 \text{ to } 4 \\ (A) &\leftarrow (ROM(PC))_3 \text{ to } 0 \\ \text{When URS}{=}1, \\ (CY) &\leftarrow (ROM(PC))_8 \\ (B) &\leftarrow (ROM(PC))_7 \text{ to } 4 \\ (A) &\leftarrow (ROM(PC))_7 \text{ to } 4 \\ (A) &\leftarrow (ROM(PC))_3 \text{ to } 0 \\ (SP) &\leftarrow (SP) - 1 \\ (PC) &\leftarrow (SK(SP)) \end{split}$
uo	АМ	0	0	0	0	0	1	0	1	0	0	0	A	1	1	$(A) \leftarrow (A) + (M(DP))$
Arithmetic operation	AMC	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP))+ (CY)$ $(CY) \leftarrow Carry$
Arithr	A n	0	1	0	1	0	N3	n2	N1	no	0	A	n	1	1	(A) ← (A) + n n = 0 to 15
	SC	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	1	1	0	0	0	6	1	1	$(CY) \leftarrow 0$
	SZC	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
	СМА	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(\overline{A}) \leftarrow (\overline{A})$
		0	0	0		1	1			1		1		1	1	\rightarrow CY \rightarrow $A_3A_2A_1A_0$
	LGOP	0	0	1	0	0	0	0	0	1	0	4	1	1	1	Logic operation instruction XOR, OR, AND

Note: p is 0 to 7 for M34282M1, p is 0 to 15 for M34282M2/E2.

Skip condition	Carry flag CY	Detailed description
Continuous description	-	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
_	- 0/1	Transfers bits 7 to 4 to register B and bits 3 to 0 to register A when URS flag is cleared to "0." These bits 7 to 0 are the ROM pattern in address (DR ₂ DR ₁ DR ₀ A ₃ A ₂ A ₁ A ₀) specified by registers A and D in page p. Transfers bit 8 of ROM pattern is transferred to flag CY when URS flag is set to "1" (after the URSC instruction is executed). (One of stack is used when the TABP p instruction is executed.)
_	_	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
_	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	_	Adds the value n in the immediate field to register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation.
-	1	Sets (1) to carry flag CY.
-	0	Clears (0) to carry flag CY.
(CY) = 0	-	Skips the next instruction when the contents of carry flag CY is "0."
_	-	Stores the one's complement for register A's contents in register A.
_	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
_	-	Executes the logic operation selected by logic operation selection register LO between the contents of register A and register E, and stores the result in register A.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS (CONTINUED)

Parameter	r					I	nstru	ictio	n cc	de				er of ds	er of es	
Type of instructions	Mnemonic	D8	D7	D6	D₅	D4	Dз	D2	D1	Do		adeo otati	cimal on	Number o words	Number of cycles	Function
	SB j	0	0	1	0	1	1	1	j1	jo	0	5	C +j	1	1	(Mj(DP)) ← 1 j = 0 to 3
Bit operation	RB j	0	0	1	0	0	1	1	j1	jo	0	4	C +j	1	1	(Mj(DP)) ← 0 j = 0 to 3
Bit	SZB j	0	0	0	1	0	0	0	j1	jo	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3
ç	SEAM	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP)) ?
Comparison operation	SEA n	0	0	0	1	0	0	1	0	1	0	2	5	2	2	(A) = n ? n = 0 to 15
00		0	1	0	1	1	n 3	n 2	N1	n 0	0	В	n			
	Ва	1	1	a 6	a 5	a 4	a 3	a 2	a 1	a 0	1	8 +a	а	1	1	(PC∟) ← a6–a0
	BL p, a	0	0	0	1	1	рз	p2	p1	p 0	0	3	р	2	2	(РСн) ← р (РСL) ← а6-а0
ration		1	1	a 6	a 5	a 4	a 3	a 2	aı	a 0	1	8 +a	а			(Note)
Branch operation	BA a	0	0	0	0	0	0	0	0	1	0	0	1	2	2	(PC∟) ← (a6–a4, A3–A0)
Bra		1	1	a 6	a 5	a 4	аз	a 2	a 1	a 0	1	8 +a	а			
	BLA p, a	0	0	0	0	1	0	0	0	0	0	1	0	2	2	(РСн) ← р (РС∟) ← (а6–а4, Аз–Ао)
		1	1	a 6	a 5	a4	рз	p2	рı	p 0	1	8 +a	р			(Note)

Note: p is 0 to 7 for M34282M1, p is 0 to 15 for M34282M2/E2.

Skip condition	Carry flag CY	Detailed description
-	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
_	-	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	-	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0."
(A) = (M(DP))	-	Skips the next instruction when the contents of register A is equal to the contents of M(DP).
(A) = n n = 0 to 15	-	Skips the next instruction when the contents of register A is equal to the value n in the immediate field.
-	-	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
_	_	Branch within a page : Branches to address (a ₆ a ₅ a ₄ A ₃ A ₂ A ₁ A ₀) determined by replacing the low- order 4 bits of the address a in the identical page with register A.
_	_	Branch out of a page : Branches to address (a ₆ a ₅ a ₄ A ₃ A ₂ A ₁ A ₀) determined by replacing the low- order 4 bits of the address a in page p with register A.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS (CONTINUED)

Parameter			Instruction code												er of	<u>e</u>		
Type of instructions	Mnemonic	D8	D7	D6	D₅	D4	Dз	D2	D1	Do		ade otati	cimal ion	Number of words	Number of cycles	Function		
	BM a	1	0	a 6	a 5	a 4	аз	a 2	a 1	ao	1	а	а	1	1	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a_{6}-a_{0}$		
Subroutine operation	BML p, a	0	0	1	1	1	рз	p2	p1	p o	0	7	р	2	2	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow p$		
broutine o		1	0	a 6	a 5	a 4	аз	a 2	a 1	a 0	1	а	а			(PCL) ← a6−a0 (Note)		
Su	BMLA p, a	0	0	1	0	1	0	0	0	0	0	5	0	2	2	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$		
		1	0	a 6	a 5	a 4	рз	p2	рı	po	1	а	р			(PCH) ← p (PCL) ← (a6–a4, A3–A0) (Note)		
beration	RT	0	0	1	0	0	0	1	0	0	0	4	4	1	2	$(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$		
Return operation	RTS	0	0	1	0	0	0	1	0	1	0	4	5	1	2	$(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$		
	T1AB	0	0	1	0	0	0	1	1	1	0	4	7	1	1	at timer 1 stop (V10=0) (R17-R14) \leftarrow (B), (R13-R10) \leftarrow (A) (T17-T14) \leftarrow (B), (T13-T10) \leftarrow (A) at timer 1 operating (V10=1) (R17-R14) \leftarrow (B), (R13-R10) \leftarrow (A)		
ç	TAB1	0	0	1	0	1	0	1	1	1	0	5	7	1	1			
peratio	TV1A	0	0	1	0	1	1	0	1	1	0	5	В	1	1	$(V12-V10) \leftarrow (A2-A0)$		
Timer operation	SNZT1	0	0	1	0	0	0	0	1	0	0	4	2	1	1	(T1F) = 1 ? After skipping the next instruction $(T1F) \leftarrow 0$		
	T2AB	0	1	0	0	0	1	0	0	0	0	8	8	1	1	$(R2L7-R2L4) \leftarrow (B)$ $(R2L3-R2L0) \leftarrow (A)$ $(T27-T24) \leftarrow (B),$ $(T23-T20) \leftarrow (A)$		

Note : p is 0 to 7 for M34282M1, and p is 0 to 15 for M34282M2/E2.

Skip condition	Carry flag CY	Detailed description
-	-	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
_	_	Call the subroutine : Calls the subroutine at address a in page p.
_	_	Call the subroutine : Calls the subroutine at address (a ₆ a ₅ a ₄ A ₃ A ₂ A ₁ A ₀) determined by replacing the low-order 4 bits of address a in page p with register A.
_	-	Returns from subroutine to the routine called the subroutine.
Skip at uncondition	-	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.
_	-	At timer 1 stop (V10 = 0), transfers the contents of register A and register B to timer 1 and reload
		register R1. At timer 1 operating (V1 ₀ = 1), transfers the contents of register A and register B to reload register R1.
-	-	Transfers the contents of timer 1 to registers A and B.
-	-	
(T1F) = 1	_	Transfers the contents of register A to registers V1.
		Skips the next instruction when the contents of T1F flag is "1." After skipping, clears (0) to T1F flag.
_	-	Transfers the contents of register A and register B to timer 2 and reload register R2L.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS (CONTINUED)

Parameter	r					lı	nstru	ictio	n co	de				er of Is	er of es	
Type of instructions	Mnemonic	D8	D7	D6	D5	D4	Dз	D2	D1	Do	Hexa not			Number of words	Number of cycles	Function
	TAB2	0	0	1	0	0	0	0	0	0	0	4	0	1	1	(B) ← (T27–T24), (A) ← (T23–T20)
	TV2A	0	0	1	0	1	1	0	1	0	0	5	A	1	1	(V23−V20) ← (A3−A0)
Timer operation	SNZT2	0	0	1	0	1	0	0	1	0	0	5	2	1	1	(T2F) = 1 ? After skipping the next instruction (T2F) $\leftarrow 0$
Timer	T2HAB	0	1	0	0	0	1	0	0	1	0	8	9	1	1	(R2H7–R2H4) ← (B) (R2H3–R2H0) ← (A)
	T2R2L	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$(T27-T24) \leftarrow (R2L7-R2L4)$ $(T23-T20) \leftarrow (R2L3-R2L0)$
e tion	SCAR	0	1	0	0	0	0	1	1	1	0	8	7	1	1	(CAR) ← 1
Carrier wave control operation	RCAR	0	1	0	0	0	0	1	1	0	0	8	6	1	1	(CAR) ← 0
	CLD	0	0	0	0	1	0	0	0	1	0	1	1	1	1	$(D) \leftarrow 0$
	RD	0	0	0	0	1	0	1	0	0	0	1	4	1	1	(D(Y)) ← 0 (Y) = 0 to 7
	SD	0	0	0	0	1	0	1	0	1	0	1	5	1	1	(D(Y)) ← 1 (Y) = 0 to 7
E E	SZD	0	0	0	1	0	0	1	0	0	0	2	4	2	2	(D(Y)) = 0?
peratic		0	0	0	1	0	1	0	1	1	0	2	В			(Y) = 4 to 7
Input/Output operation	OEA	0	1	0	0	0	0	1	0	0	0	8	4	1	1	(E1, E0) ← (A1, A0)
Input/C	IAE	0	0	1	0	1	0	1	1	0	0	5	6	1	1	(A2−A0) ← (E2−E0)
	OGA	0	1	0	0	0	0	0	0	0	0	8	0	1	1	$(G) \gets (A)$
	IAG	0	0	0	1	0	1	0	0	0	0	2	8	1	1	$(A) \gets (G)$

Skip condition	Carry flag CY	Detailed description
-	-	Transfers the contents of timer 2 to registers A and B.
-	-	Transfers the contents of register A to registers V2.
(T2F) = 1	-	Skips the next instruction when the contents of T2F flag is "1." After skipping, clears (0) to T2F flag.
-	-	Transfers the contents of register A and register B to reload register R2H.
-	-	Transfers the contents of reload register R2L to timer 2.
_	-	Sets (1) to port CARR output flag (CAR).
_	-	Clears (0) to port CARR output flag (CAR).
	_	Clears (0) to port D (high-impedance state).
_	_	Clears (0) to a bit of port D specified by register Y (high-impedance state).
-	_	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 (Y) = 4 to 7	-	Skips the next instruction when a bit of port D specified by register Y is "0."
-	-	Outputs the contents of register A to port E.
-	-	Transfers the contents of port E to register A.
-	-	Outputs the contents of register A to port G.
-	-	Transfers the contents of port G to register A.

Parameter						Ir	nstru	ictio	n co	de				er of ds ber of les		
Type of instructions	Mnemonic	D8	D7	D6	D5	D4	D3	D2	D1	Do		lexadecimal notation		Number of words	Number of cycles	Function
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	1	1	$(PC) \leftarrow (PC) + 1$
	POF	0	0	0	0	0	1	1	0	1	0	0	D	1	1	RAM back-up
	SNZP	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?
Other operation	ССК	0	0	1	0	1	1	0	0	1	0	5	9	1	1	STCK changes to f(XIN)
Other	TLOA	0	0	1	0	1	1	0	0	0	0	5	8	1	1	(LO1, LO0) ← (A1, A0)
	URSC	0	1	0	0	0	0	0	1	0	0	8	2	1	1	(URS) ← 1
	TPU0A	0	1	0	0	0	1	1	1	1	0	8	F	1	1	(PU03–PU0₀) ← (A3–A₀)
	TPU1A	0	1	0	0	0	1	1	1	0	0	8	Е	1	1	(PU13–PU10) ← (A3–A0)
	WRST	0	0	0	0	0	1	1	1	1	0	0	F	1	1	$(WDF1) \leftarrow 0$

Skip condition	Carry flag CY	Detailed description
-	-	No operation
_	-	Puts the system in RAM back-up state.
(P) = 1	-	Skips the next instruction when P flag is "1." After skipping, P flag remains unchanged.
-	-	System clock (STCK) changes to f(XIN) from f(XIN)/8. Execute this CCK instruction at address 0 in page 0.
-	-	Transfers the contents of register A to the logic operation selection register LO.
-	-	Sets the most significant ROM code reference enable flag (URS) to "1."
-	-	Transfers the contents of register A to register PU0.
-	-	Transfers the contents of register A to register PU1.
-	-	Initializes the watchdog timer flag (WDF1).

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

N21	RUC	TION	COI		ABLE	-	1			1								40000	44000
\bigvee	D8-D4	00000	00001	00010	00011	00100	00101	00110	00111	01000	01001	01010	01011	01100	01101	01110	01111	10000 10111	
D3- D0	Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0000	0	NOP	BLA	SZB 0	BL	TAB2	BMLA	XAM 0	BML	OGA	TABP 0	A 0	LA 0	LXY 0,0	LXY 1,0	LXY 2,0	LXY 3,0	ВМ	В
0001	1	ВА	CLD	SZB 1	BL	LGOP	_	XAM 1	BML	_	TABP 1	A 1	LA 1	LXY 0,1	LXY 1,1	LXY 2,1	LXY 3,1	BM	В
0010	2	_		SZB 2	BL	SNZT1	SNZT2	XAM 2	BML	URSC	TABP 2	A 2	LA 2	LXY 0,2	LXY 1,2	LXY 2,2	LXY 3,2	BM	В
0011	3	SNZP	INY	SZB 3	BL	_	T2R2L	XAM 3	BML	_	TABP 3	A 3	LA 3	LXY 0,3	LXY 1,3	LXY 2,3	LXY 3,3	BM	в
0100	4		RD	SZD	BL	RT	_	TAM 0	BML	OEA	TABP 4	A 4	LA 4	LXY 0,4	LXY 1,4	LXY 2,4	LXY 3,4	BM	В
0101	5	_	SD	SEAn	BL	RTS	_	TAM 1	BML	_	TABP 5	A 5	LA 5	LXY 0,5	LXY 1,5	LXY 2,5	LXY 3,5	BM	В
0110	6	RC	_	SEAM	BL	_	IAE	TAM 2	BML	RCAR	TABP 6	A 6	LA 6	LXY 0,6	LXY 1,6	LXY 2,6	LXY 3,6	BM	В
0111	7	SC	DEY	_	BL	T1AB	TAB1	TAM 3	BML	SCAR	TABP 7	A 7	LA 7	LXY 0,7	LXY 1,7	LXY 2,7	LXY 3,7	BM	в
1000	8	_	_	IAG	BL*	_	TLOA	XAMI 0	BML*	T2AB	TABP 8*	A 8	LA 8	LXY 0,8	LXY 1,8	LXY 2,8	LXY 3,8	ВМ	В
1001	9	_	_	TDA	BL*	_	сск	XAMI 1	BML*	T2HAB	TABP 9*	A 9	LA 9	LXY 0,9	LXY 1,9	LXY 2,9	LXY 3,9	ВМ	в
1010	A	AM	TEAB	TABE	BL*	_	TV2A	XAMI 2	BML*	_	TABP 10*	A 10	LA 10	LXY 0,10	LXY 1,10	LXY 2,10	LXY 3,10	BM	В
1011	В	AMC	_	_	BL*	_	TV1A	XAMI 3	BML*	_	TABP 11*	A 11	LA 11	LXY 011	LXY 1,11	LXY 2,11	LXY 3,11	BM	В
1100	с	ΤΥΑ	СМА		BL*	RB 0	SB 0	XAMD 0	BML*	_	TABP 12*	A 12	LA 12	LXY 0,12	LXY 1,12	LXY 2,12	LXY 3,12	BM	В
1101	D	POF	RAR	_	BL*	RB 1	SB 1	XAMD 1	BML*	_	TABP 13*	A 13	LA 13	LXY 0,13	LXY 1,13	LXY 2,13	LXY 3,13	BM	В
1110	E	TBA	TAB	_	BL*	RB 2	SB 2	XAMD 2	BML*	TPU1A	TABP 14*	A 14	LA 14	LXY 0,14	LXY 1,14	LXY 2,14	LXY 3,14	BM	В
1111	F	WRST	TAY	szc	BL*	RB 3	SB 3	XAMD 3	BML*	TPU0A	TABP 15*	A 15	LA 15	LXY 0,15	LXY 1,15	LXY 2,15	LXY 3,15	вм	В

INSTRUCTION CODE TARLE

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D8-D4 show the high-order 5 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use the code marked "-."

The codes for the second word of a two-word instruction are described below.

	The second word												
BL	1	1 a a a	aaaa										
BML	1	0 a a a	aaaa										
BA	1	1 a a a	aaaa										
BLA	1	1 a a a	рррр										
BMLA	1	0 a a a	рррр										
SEA	0	1011	nnnn										
SZD	0	0010	1011										

* cannot be used in the M34282M1.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

REGISTER STRUCTURE

	Timer control register V1	at	t reset : 0002	at RAM back-up : 0002	W					
V12	Corrier ways output outploantral hit	0	Auto-control output	t by timer 1 is invalid						
V 12	Carrier wave output auto-control bit	1	Auto-control output	Auto-control output by timer 1 is valid						
\/A.	Timer 1 count source selection bit	0	Carrier wave output	it (CARRY)						
V11		1	Bit 5 of watchdog t	imer (WDT)						
14	Time of A construct bit	0	Stop (Timer 1 state	e retained)						
V10	Timer 1 control bit	1	Operating							

	Timer control register V1	at	reset : 00002	at RAM back-up : 00002	W				
V13	Corrier ways "L" interval expansion hit	0	To expand "H" inte	rval is invalid					
V 13	Carrier wave "H" interval expansion bit	1	To expand "H" inte	rval is valid (when V22=1 selected)					
1/4 -	Corrier ways concretion function control bit	0	Carrier wave gener	ation function invalid					
V12	Carrier wave generation function control bit	1	Carrier wave gener	ation function valid					
	Timer 2 count course coloction bit	0	0 f(XIN)						
V11	Timer 2 count source selection bit	1	f(XIN)/2						
	Timer O control bit	0	Stop (Timer 2 state	Stop (Timer 2 state retained)					
V10	Timer 2 control bit	1	Operating						

Logic operation selection register LO		at reset : 002		t reset : 002	at RAM back-up : 002	W
		LO ₁	LO ₀		Logic operation function	
LO1			0	Exclusive logic OR operation (XOR)		
	Logic operation selection bits	0	1	OR operation (OR)		
LO		1	0	AND operation (AND)		
		1	1	Not available		

Pull-down control register PU0		at	reset : 00002	at RAM back-up : state retained	W
PU03	Ports G ₂ , G ₃ pull-down transistor control	0	Pull-down transisto	r OFF, key-on wakeup invalid	
P003	bit	1	Pull-down transisto	r ON, key-on wakeup valid	
DUIOs	Ports G ₀ , G ₁ pull-down transistor control	0	Pull-down transistor OFF, key-on wakeup invalid		
PU02 bit 1 Pull-down transistor ON, key-on wakeup va			r ON, key-on wakeup valid		
PU01	Port Ex pull down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid		
P001	Port E1 pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid		
PU00 Port E0 pull-down transistor control bit		0	Pull-down transistor OFF, key-on wakeup invalid		
F 000	Port E ₀ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid		

Pull-down control register PU1		at reset : 00002		at RAM back-up : state retained	W
PU13	Dart D- null down transistor control hit	0	Pull-down transisto	r OFF, key-on wakeup invalid	
P013	Port D7 pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid		
0 Pull-down transistor OFF, key-on wakeup invalid					
PU12	Port D ₆ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid		
PU11	Port Dr. null down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid		
PUI1	Port D₅ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid		
		0	Pull-down transistor OFF, key-on wakeup invalid		
PU10	Port D ₄ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid		

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage		-0.3 to 5	V
Vi	Input voltage		-0.3 to VDD+0.3	V
Vo	Output voltage		-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range		-20 to 85	°C
Tstg	Storage temperature range		-40 to 125	°C

RECOMMENDED OPERATING CONDITIONS

(Ta = -20 °C to 85 °C, VDD = 1.8 V to 3.6 V, unless otherwise noted)

Symbol	Da		Quaditions		Limits		1.1
Symbol	Pa	rameter	Conditions	Min.	Тур.	Max.	Unit
Vdd	Supply voltage			1.8		3.6	V
Vram	RAM back-up voltage (at	RAM back-up mode)		1.1		3.6	V
Vss	Supply voltage				0		V
Vін	"H" level input voltage Po	orts D4–D7, E, G	Vdd = 3.0 V	0.7Vdd		Vdd	V
Viн	"H" level input voltage XI	١	Vdd = 3.0 V	0.8Vdd		Vdd	V
VIL	"L" level input voltage Po	rts D4–D7, E, G	Vdd = 3.0 V	0		0.2Vdd	V
VIL	"L" level input voltage XIN	l	Vdd = 3.0 V	0		0.2Vdd	V
loн(peak)	"H" level peak output cur	rent Ports D, E1, G	Vdd = 3.0 V			-4	mA
loн(peak)	"H" level peak output curr	rent Port Eo	Vdd = 3.0 V			-24	mA
loн(peak)	"H" level peak output curr	rent CARR	Vdd = 3.0 V			-20	mA
loL(peak)	"L" level peak output curr	ent CARR	Vdd = 3.0 V			4	mA
Іон(avg)	"H" level average output	current Ports D, E1, G	Vdd = 3.0 V			-2	mA
Іон(avg)	"H" level average output	current Port Eo	Vdd = 3.0 V			-12	mA
Іон(avg)	"H" level average output	current CARR	Vdd = 3.0 V			-10	mA
lo _L (avg)	"L" level average output of	current CARR	Vdd = 3.0 V			2	mA
f(Xin)	System clock frequency	when STCK = $f(X_{IN})/8$ selected	Ceramic resonance			4	MHz
		when STCK = f(XIN) selected	Ceramic resonance			500	kHz
Vdet	Voltage drop detection ci	rcuit detection voltage		1.10		1.80	V
			Ta=25 °C	1.40	1.50	1.56	1
Tdet	Voltage drop detection ci	rcuit low voltage	When supply voltage passes		0.2	1.2	ms
	determination time		the detected voltage at \pm 50V/s.				
TPON	Power-on reset circuit va	lid power source rising time	VDD = 0 to 2.2 V			1	ms

Note: The average output current ratings are the average current value during 100 ms.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

ELECTRICAL CHARACTERISTICS

(Ta = -20 °C to 85 °C, VDD = 3 V, unless otherwise noted)

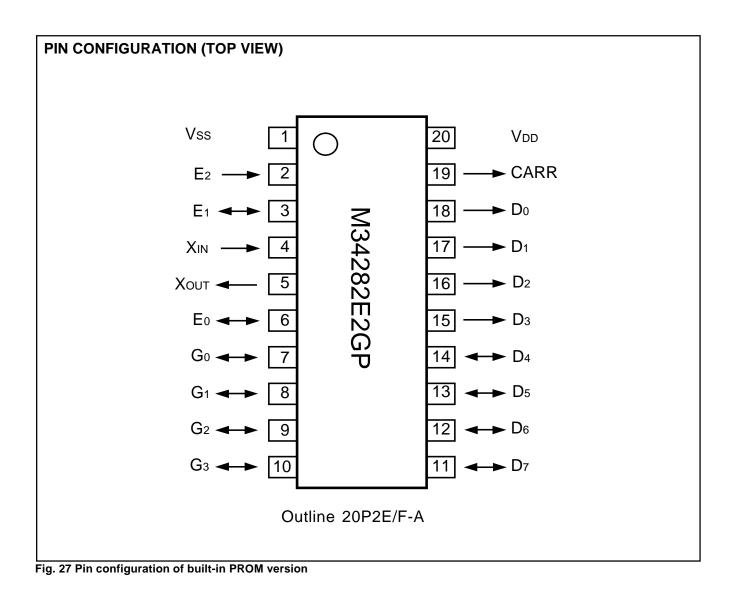
Cumhal	Parameter Test conditions			Unit		
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	
Vol	"L" level output voltage Port CARR	IoL = 2 mA			0.9	V
Vol	"L" level output voltage Xout	IoL = 0.2 mA			0.9	V
Vон	"H" level output voltage Ports D, E1, G	Іон = –2 mA	2.1			V
Vон	"H" level output voltage Port Eo	Іон = –12 mA	1.5			V
Vон	"H" level output voltage CARR	Іон = –10 mA	1.0			V
Vон	"H" level output voltage Хоит	Іон = -0.2 mA	2.1			V
lı∟	"L" level input current Ports D4–D7, E, G	VI = VSS			-1	μA
Ін	"H" level input current Ports E0, E1	VI = VDD			1	μA
		Pull-down transistor in off-state				
loz	Output current at off-state Ports D, E0, E1, G	Vo = Vss			-1	μA
ldd	Supply current (when operating)	$f(X_{IN}) = 4.0 \text{ MHz}$		400	800	μA
		f(XIN) = 500 kHz		250	500	μA
	Supply current (at RAM back-up)			1	3	μA
		Ta = 25 °C		0.1	0.5	μA
Rрн	Pull-down resistor value Ports D4-D7, E, G	$V_{DD} = 3 V, V_I = 3 V$	75	150	300	kΩ
Rosc	Feedback resistor value between XIN-XOUT		700		3200	kΩ

BASIC TIMING DIAGRAM

Parameter	Machine cycle Pin name	Mi	М	i+1	
System clock	STCK				
Ports D, E, G output	Do–D7,E0,E1 Go–G3				X
Ports D, E, G input	D4–D7 E0–E2 G0–G3			X	

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

BUILT-IN PROM VERSION


In addition to the mask ROM versions, the 4282 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.

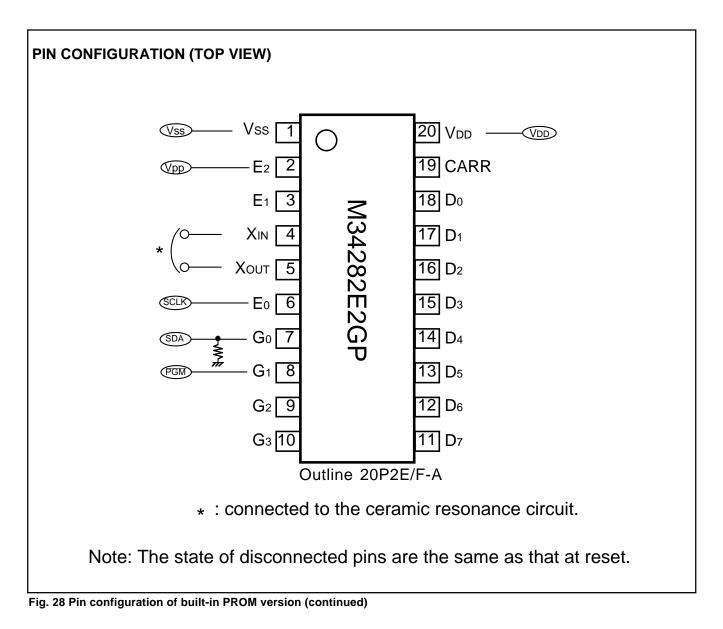
The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.

Table 10 Product of built-in PROM version

Table 10 shows the product of built-in PROM version. Figure 27 and 28 show the pin configurations of built-in PROM versions. The One Time PROM version has pin-compatibility with the mask ROM version.

Product	PROM size	RAM size	Package	ROM type	
FIUUUCI	(X 9 bits)	(X 4 bits)	Fackage	KOM type	
M34282E2GP	2048 words	64 words	20P2E/F-A	One Time PROM [shipped in blank]	

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER


(1) PROM mode (serial input/output)

The M34282E2GP has a PROM mode in addition to a normal operation mode. It has a function to serially input/output the command codes, addresses, and data required for operation (e.g., read and program) on the built-in PROM using only a few pins. This mode can be selected by setting pins SDA (serial data input/output), SCLK (serial clock input), PGM and VPP to "H" after connecting wires as shown in Figure 28 and powering on the VDD pin, and then applying 12.5V to the VPP pin.

In the PROM mode, three types of software commands (read, program, and program verify) can be used. Clock-synchronous serial I/O is used, beginning from the LSB (LSB first).

Refer to the "Mitsubishi Microcomputer Development Support Tools" Hompage (http://www.tool-spt.maec.co.jp/ index_e.htm).

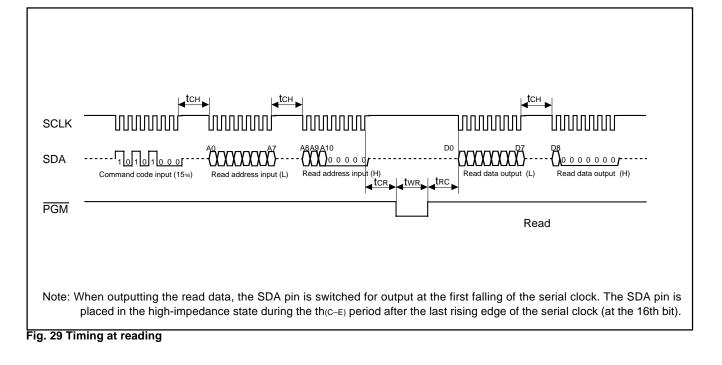
about the serial programmer for the Mitsubishi single-chip microcomputers.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

In the PROM mode, data is transferred with the clocksynchronous serial input/output. The input data is read through the SDA pin into the internal circuit synchronously with the rising edge of the serial clock pulse. The output data is output from the SDA pin synchronously with the falling edge of the serial clock pulse. Data is transferred in units of 8 bits.

Table 11 Software command

In the first transfer, the command code is input. Then, address input or data input/output is performed according to the contents of the command code. Table 11 shows the software command used in the PROM mode. The following explains each software command.

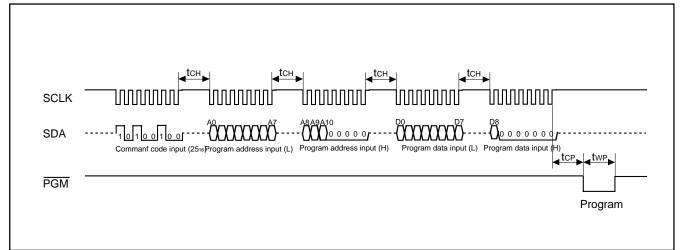

Number of transfer Command	First command code input	Second	Third	Fourth
Read	1516	Read address L (input)	Read address H (input)	Read data L (output)
Program	2516	Program address L (input)	Program address H (input)	Program data L (input)
Program verify	3516	Program address L (input)	Program address H (input)	Program data L (input)

Number of transfer Command	Fifth	Sixth	Seventh
Read	Read data H (output)		
Program	Program data H (input)		
Program verify	Program data H (input)	Verify data L (output)	Verify data H (output)

(3) Read

Input the command code 15₁₆ in the first transfer. Proceed and input the low-order 8 bits and the high-order 8 bits of the address and pull the \overrightarrow{PGM} pin to "L." When this is done, the contents of input address is read and stored into the internal data latch.

When the PGM pin is released back to "H" and serial clock is input to the SCLK pin, the low-order 8 bits and high-order 8 bits of read data which have been stored into the data latch, are serially output from the SDA pin.



SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(4) Program

Input command code 2516 in the first transfer. Proceed and input the low-order 8 bits and high-order 8 bits of the address and the low-order 8 bits and high-order 8 bits of program data,

and pull the $\overline{\text{PGM}}$ pin to "L." When this is done, the program data is programmed to the specified address.

Fig. 30 Timing at programming

(5) Program verify

Input command code 3516 in the first transfer. Proceed and input the low-order 8 bits and high-order 8 bits of the address and the low-order 8 bits and high-order 8 bits of program data, and pull the \overrightarrow{PGM} pin to "L." When this is done, the program data is programmed to the specified address. Then, when the \overrightarrow{PGM} pin is pulled to "L" again after it is released back to "H," the address programmed with the program command is read

and verified and stored into the internal data latch. When the \overline{PGM} pin is released back to "H" and serial clock is input to the SCLK pin, the verify data that has been stored into the data latch is serially output from the SDA pin.

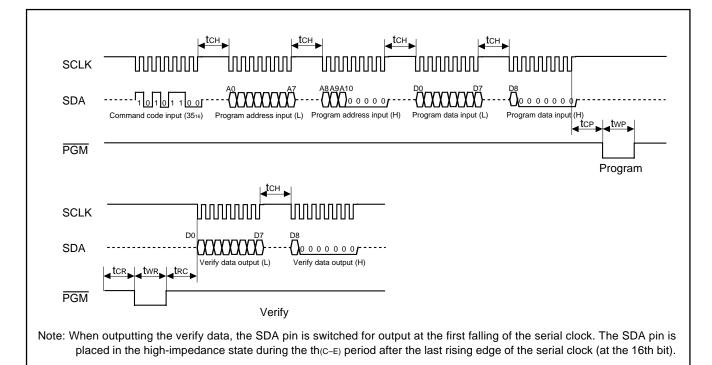
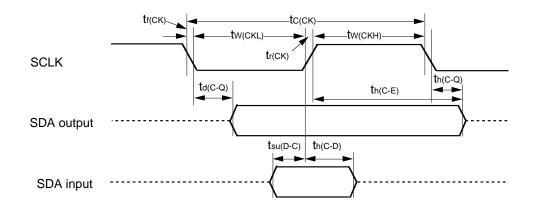



Fig. 31 Timing at program verifying

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PROGRAM ALGORITHM FLOW CHART

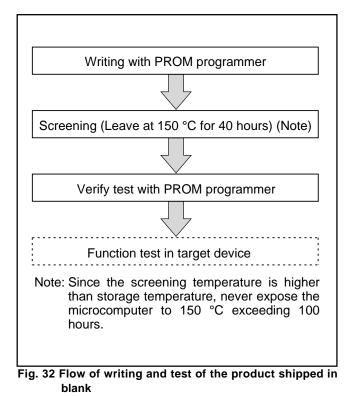

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

TIMING REQUIREMENT CONDITION AND SWITCHING CHARACTERISTICS

(Ta = 25 °C, VDD = 4.0 V, VPP = 12.5 V)

Symbol	rmbol Parameter		nits	Unit
Symbol	Falanetei	Min.	Max.	Onit
tсн	Serial transfer width time	2.0		μs
tCR	Read wait time after transfer	2.0		μs
twr	Read pulse width	500		ns
trc	Transfer wait time after read	2.0		μs
tCP	Program wait time after transfer	2.0		μs
twp	Program pulse width	0.19	0.21	ms
towp	Added program pulse width	0.19	5.25	ms
tc(ck)	SCLK input cycle time	1.0		μs
tw(CKH)	SCLK "H" pulse width	450		ns
tw(CKL)	SCLK "L" pulse width	450		ns
tr(CK)	SCLK rising time	40		ns
tf(CK)	SCLK falling time	40		ns
td(C–Q)	SDA output delay time	0	180	ns
th(C–Q)	SDA output hold time	0		ns
th(C–E)	SDA output hold time (only for 16th bit)	100		ns
tsu(D–C)	SDA input set-up time	60		ns
th(C–D)	SDA input hold time	180		ns

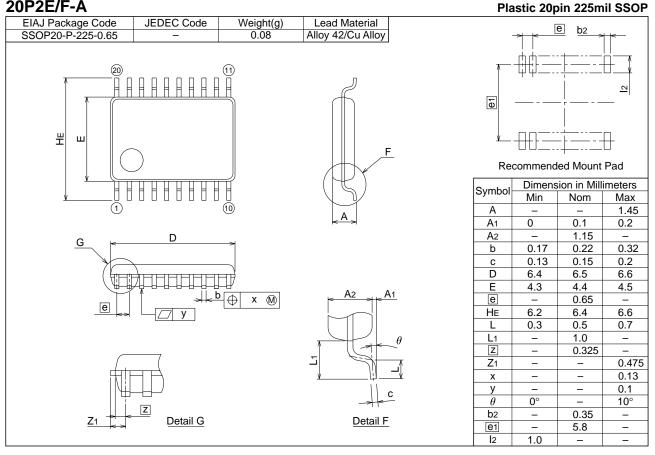
TIMING DIAGRAM


Measurement condition Output timing voltage: VOL = 0.8 V, VOH = 2.0 VInput timing voltage: VIL = 0.2 VDD, VIH = 0.8 VDD

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(6) Notes on handling

- ① A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
- ② For the One Time PROM version, Mitsubishi Electric corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 32 before using is recommended.



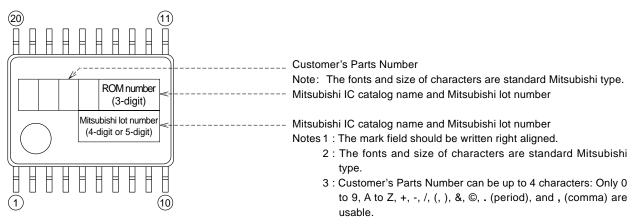
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PACKAGE OUTLINE

20P2E/F-A

4282 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER


20P2E/F-A (20-PIN SSOP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name

Please choose one of the marking types below (A, B), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi IC Catalog Name

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Keep safety first in your circuit designs!

Misubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples .
- contained in these materials. All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi
- All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication or these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. If these products to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the anonymed factionation.
- approved destination.
- Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

© 2001 MITSUBISHI ELECTRIC CORP. New publication, effective July. 2001. Specifications subject to change without notice.

REVISION DESCRIPTION LIST

4282 GROUP DATA SHEET

Rev. No.	Revision Description	Rev. date
1.0	First Edition	000619
1.1	Page 12 (2) Precautions revised.	000725
	Page 13 (3) Timer 1, (4) Timer 2 revised.	
	Page 22 ③ Timer revised.	
1.2	Pages 7, 8, 14, 18, 21: Character fonts errors revised.	000823
1.3	All pages:	010703
	"PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change." eliminated.	
	Page 1: Product name table; "Under development" eliminated.	
	Page 9: 48 words X 4 bits (128 bits) \rightarrow 48 words X 4 bits (192 bits)	
	Page 21: ROM ORDERING METHOD revised.	
	Page 61: "Mitsubishi Microcomputer Development Support Tools" Hompage	
	(http://www.tool-spt.m <u>es</u> c.co.jp/index_e.htm)	
	→ (http://www.tool-spt.m <u>ae</u> c.co.jp/index_e.htm)	