FEATURES

Broadband RF port: LF to 500 MHz
Conversion gain: $\mathbf{3 d B}$
Noise figure: $\mathbf{1 2 ~ d B}$
Input IP3: $\mathbf{2 4 ~ d B m}$
Input $\mathrm{P}_{1 \mathrm{~dB}}$: $\mathbf{8 . 5 \mathrm { dBm }}$
LO drive: $\mathbf{0 ~ d B m}$
External control of mixer bias for low power operation
Single-ended, $\mathbf{5 0} \Omega$ LO input ports
High Input Impedance RF port
Single-supply operation: 5 V @ 97 mA
Power-down mode
Exposed paddle LFCSP: $3 \mathrm{~mm} \times 3 \mathrm{~mm}$
APPLICATIONS
Cellular base station receivers and transmitters
ISM receivers and transmitters
Radio links
RF Instrumentation

GENERAL DESCRIPTION

The AD8342 is a high performance, broadband active mixer. It is well suited for demanding receive applications that require wide bandwidth on all ports and very low intermodulation distortion and noise figure.

The AD8342 provides a typical conversion gain of 3 dB at 500 MHz . The integrated LO driver supports a 50Ω input impedance with a low LO drive level, helping to minimize external component count.

The high input impedance RF port can be terminated and driven single ended or a matching network can be used for best noise or power match. The RF input accepts input signals as large as 1.7 V p-p or 8 dBm (re: 50Ω) at $\mathrm{P}_{\mathrm{ldB}}$.

Rev. PrB
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Figure 1.

The open-collector differential outputs provide excellent balance and can be used with a differential filter or IF amplifier, such as the AD8369 or AD8351. These outputs may also be converted to a single-ended signal through the use of a matching network or a transformer (balun). When centered on the VPOS supply voltage, each of the differential outputs may swing 2.5 V p-p.

The AD8342 is fabricated on an Analog Devices proprietary, high performance SiGe IC process. The AD8342 is available in a 16-lead LFCSP package. It operates over a $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. An evaluation board is also available.

SPECIFICATIONS

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{RF}}=500 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=600 \mathrm{MHz}$, LO power $=0 \mathrm{dBm}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{R}_{\mathrm{BIAS}}=1.82 \mathrm{k} \Omega$, unless otherwise noted.
Table 1.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Conditions \& Min \& Typ \& Max \& Unit \\
\hline \begin{tabular}{l}
RF INPUT INTERFACE \\
Return Loss \\
DC Bias Level
\end{tabular} \& \begin{tabular}{l}
(Pin 15, RFIN and Pin 14, RFCM) \\
Hi -Z input terminated off-chip \\
Internally generated; port must be ac-coupled
\end{tabular} \& \& \[
\begin{aligned}
\& 10 \\
\& 2.5
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \text { dB } \\
\& \mathrm{V}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
OUTPUT INTERFACE \\
Output Impedance DC Bias Voltage Power Range
\end{tabular} \& \begin{tabular}{l}
Differential impedance, \(\mathrm{f}=200 \mathrm{MHz}\) \\
Externally generated \\
Via a 4:1 balun
\end{tabular} \& 4.75 \& \[
\begin{aligned}
\& 9 \| 1 \\
\& \mathrm{~V}_{\mathrm{s}}
\end{aligned}
\] \& \[
\begin{array}{r}
5.25 \\
+13 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& \mathrm{k} \Omega \| \mathrm{pF} \\
\& \mathrm{v} \\
\& \mathrm{dBm}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
LO INTERFACE \\
LO Power \\
Return Loss DC Bias Voltage
\end{tabular} \& Internally generated; port must be ac-coupled \& -10 \& \[
\begin{aligned}
\& 0 \\
\& 10 \\
\& V_{s}-1.6
\end{aligned}
\] \& +4 \& dBm
\(d B\)
V \\
\hline POWER-DOWN INTERFACE PWDN Threshold PWDN Response Time PWDN Input Bias Current \& \begin{tabular}{l}
Device enabled, IF output to \(90 \%\) of its final level \\
Device disabled, supply current \(<5 \mathrm{~mA}\) \\
Device enabled \\
Device disabled
\end{tabular} \& \& \[
\begin{aligned}
\& V_{s}-1.4 \\
\& 0.4 \\
\& 0.01 \\
\& -80 \\
\& +100
\end{aligned}
\] \& \& \begin{tabular}{l}
V \\
\(\mu \mathrm{s}\) \\
\(\mu \mathrm{s}\) \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline \begin{tabular}{l}
POWER SUPPLY \\
Positive Supply Voltage \\
Quiescent Current VPDC \\
VPMX, IFOP, IFOM VPLO \\
Total Quiescent Current Power-Down Current
\end{tabular} \& \begin{tabular}{l}
Supply current for bias cells \\
Supply current for mixer, RBAA \(=1.82 \mathrm{k} \Omega\) \\
Supply current for LO limiting amplifier
\[
V_{s}=5 \mathrm{~V}
\] \\
Device disabled
\end{tabular} \& 4.75

TBD \& $$
\begin{aligned}
& 5 \\
& 5 \\
& 5 \\
& 57 \\
& 35 \\
& 97 \\
& 500
\end{aligned}
$$ \& 5.25

TBD \& | mA |
| :--- |
| mA |
| mA |
| mA |
| $\mu \mathrm{A}$ |

\hline
\end{tabular}

AC PERFORMANCE

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, LO power $=0 \mathrm{dBm}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{R}_{\text {BIAS }}=1.82 \mathrm{k} \Omega$, unless otherwise noted.
Table 2.

Parameter	Conditions	Min	Typ	Max	Unit
RF Frequency Range		LF		500	MHz
LO Frequency Range	High Side LO	LF		850	MHz
IF Frequency Range	Note: the upper "IF" is when used as an upconverter	DC		350	MHz
Conversion Gain	$\mathrm{f}_{\mathrm{RF}}=460 \mathrm{MHz}, \mathrm{f}_{\mathrm{L}}=550 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=90 \mathrm{MHz}$		3.2		dB
	$\mathrm{f}_{\mathrm{RF}}=238 \mathrm{MHz}, \mathrm{f}_{\mathrm{L}}=286 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=48 \mathrm{MHz}$		3.4		dB
SSB Noise Figure	$\mathrm{f}_{\mathrm{RF}}=460 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=550 \mathrm{MHz}, \mathrm{fiF}=90 \mathrm{MHz}$		12.5		dB
	$\mathrm{f}_{\mathrm{RF}}=238 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=286 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=48 \mathrm{MHz}$		12.2		dB
Input Third-Order Intercept	$\begin{aligned} & f_{R F 1}=460 \mathrm{MHz}, f_{R F 2}=461 \mathrm{MHz}, f_{\mathrm{LO}}=550 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IF}}=90 \mathrm{MHz} \text {, each RF tone }-10 \mathrm{dBm} \end{aligned}$		22.5		dBm
	$\begin{aligned} & f_{\mathrm{RF} 1}=238 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF2}}=239 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=286 \mathrm{MHz}, \\ & \mathrm{f}_{\mathrm{IF}}=45 \mathrm{MHz}, \text { each RF tone }-10 \mathrm{dBm} \end{aligned}$		23.5		dBm
Input Second-Order Intercept	$\mathrm{f}_{\mathrm{RF} 1}=460 \mathrm{MHz}, \mathrm{f}_{\text {RF2 }}=480 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=550 \mathrm{MHz}, \mathrm{f}_{\text {IF }}=90 \mathrm{MHz}$		48		dBm
	$\mathrm{f}_{\mathrm{RF} 1}=238 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF} 2}=248 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=286 \mathrm{MHz}, \mathrm{f}_{\text {IF }}=48 \mathrm{MHz}$		48		dBm
Input 1 dB Compression Point	$\mathrm{f}_{\mathrm{RF}}=460 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=550 \mathrm{MHz}, \mathrm{fiF}=90 \mathrm{MHz}$		8.5		dBm
	$\mathrm{f}_{\mathrm{RF}}=238 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=286 \mathrm{MHz}, \mathrm{fiF}^{\text {f }}=48 \mathrm{MHz}$		8.5		dBm
LO to IF Output Leakage	LO Power $=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=500 \mathrm{MHz}$, $\mathrm{f}_{\mathrm{L}}=600 \mathrm{MHz}$		TBD		dBm
LO to RF Input Leakage	LO Power $=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{fF}}=500 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=600 \mathrm{MHz}$		TBD		dBm
$2 \times L O$ to IF Output Leakage	LO Power $=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{fF}}=500 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=600 \mathrm{MHz}$		TBD		dBm
RF to IF Output Leakage	RF Power $=-10 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=500 \mathrm{MHz}, \mathrm{f}_{\mathrm{L}}=600 \mathrm{MHz}$		TBD		dBm
IF/2 Spurious	RF Power $=-10 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=500 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=600 \mathrm{MHz}$		TBD		dBm

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage, V_{s}	5.5 V
RF Input Level	12 dBm
LO Input Level	12 dBm
PWDN Pin	$\mathrm{V}_{\mathrm{s}}+0.5 \mathrm{~V}$
IFOP, IFOM Bias Voltage	5.5 V
Minimum Resistor from EXRB to COMM	$1.82 \mathrm{k} \Omega$
Internal Power Dissipation	580 mW
θ_{JA}	$77^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$125^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering 60 sec)	$300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. 16-Lead LFCSP

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Function
1	VPLO	Positive Supply Voltage for the LO Buffer: 4.75 V to 5.25 V.
2	LOCM	AC Ground for Limiting LO Amplifier, AC-Coupled to Ground.
3	LOIN	LO Input. Nominal input level 0 dBm , input level range -10 dBm to $+4 \mathrm{dBm}, \mathrm{re}: 50 \Omega$, ac-coupled.
$4,5,8,9,13$	COMM	Device Common (DC Ground).
6,7	IFOM, IFOP	Differential IF Outputs; Open Collectors, Each Requires DC Bias of $5.00 \mathrm{~V}($ Nominal).
10	EXRB	Mixer Bias Voltage, Connect Resistor from EXRB to Ground, Typical Value of $1.82 \mathrm{k} \Omega$
11	PWDN	Sets Mixer Current to Nominal Value. Minimum resistor value from EXRB to ground $=1.82 \mathrm{k} \Omega$.
12	VPDC	Connect to Ground for Normal Operation. Connect pin to V for disable mode.
14	RFCM	AC Ground for RF Input, AC-Coupled to Ground.
15	RFIN	RF Input. Must be ac-coupled.
16	VPMX	Positive Supply Voltage for the Mixer: 4.75 V to 5.25 V.

$\rightarrow-10 \mathrm{MHz}-48 \mathrm{MHz}-90 \mathrm{MHz}-140 \mathrm{MHz}$
Figure 3. Conversion Gain vs. RF Frequency for Multiple IF Frequencies

Figure 5. Input Compression Point vs RF Frequency for Multiple IF Frequencies

Figure 4. Single Sideband Noise Figure vs RF Frequency for Multiple IF
Frequencies

$\rightarrow-10 \mathrm{Hzz}-4-48 \mathrm{WHz} \rightarrow-90 \mathrm{NHz}-140 \mathrm{NHz}$
Figure 6.. Input IP3 vs. RF Frequency for Multiple IF Frequencies

EVALUATION BOARD

An evaluation board is available for the AD8342. The evaluation board is configured for single-ended signaling at the IF output port via a balun transformer. The schematic for the evaluation board is presented in Figure 7.

Figure 7. Customer Evaluation Board
Table 5. Evaluation Boards Configuration Options

Component	Function	Default Conditions
R1, R2, R7,	Supply Decoupling	R1, R2, R7 = 0Ω (Size 0603)
C2, C4, C5, C6, C12, C13, C14,	Power supply decoupling resistors and filter capacitors.	$\begin{aligned} & \text { C4, C6, C13, C14 = } 100 \mathrm{pF} \\ & \text { (Size 0603) } \end{aligned}$
C15		$\begin{aligned} & \text { C2, C5, C12, C15 }=0.1 \mu \mathrm{~F} \\ & \text { (Size 0603) } \end{aligned}$
R3, R4, R15, R16	Jumpers for IF output interface. The eval board can be configured to provide a balanced differential output by removing R15 and T1 and adding $0-\Omega$ resistors for R3, R4, and R16 and adding suitable choke inductors for Z1 and Z3.	R3=R4=R16=open
		R15 $=0 \Omega$ (Size 0402)
R6, C11	$\mathrm{R}_{\text {BIAS }}$ resistor that sets the bias current for the mixer core. The capacitor provides ac bypass for R6.	$\mathrm{R} 6=1.82 \mathrm{k} \Omega$ (Size 0603)
		C11 $=100 \mathrm{pF}$ (Size 0603)
C3, R14, C16, L1	RF Input. C3 Provides dc block for RF input. R14 provides a resistive input termination. C16 and L1 are provided for reactive matching the input.	C3 $=1000$ pF (Size 0402)
		R14 $=100 \Omega$ (Size 0603)
		C16 = open (Size 0603)
		L1 $=0 \Omega$ (Size 0603)
C1	RF Common AC Coupling. Provides dc block for RF input common connection.	C1 $=1000 \mathrm{pF}$ (Size 0402)
C8	LO Input AC Coupling. Provides dc block for the LO input.	C8 $=100 \mathrm{pF}$ (Size 0402)
C7	LO Common AC Coupling. Provides dc block for LO input common connection.	C7 $=100 \mathrm{pF}$ (Size 0402)
SW1	Power Down. The part is on when the PWDN is connected to a low potential. The part is disabled when PWDN is connected to the positive supply via SW1. R8 provides a pull-down when SW1 is open and can be used as a termination when excercising the PWDN feature with an external generator.	$\mathrm{R} 8=10 \mathrm{k} \Omega$ (Size 0603)
R8, R9		$\mathrm{R} 9=0 \Omega$ (Size 0603)
T1, R10, R11, R12, Z1, Z2, Z3, Z4	IF Output Interface. R12 Provides a real $100-\Omega$ termination to the open collector outputs. T1 converts differential, high impedance IF output to single-ended. The center tap of the primary is used to supply the bias voltage $\left(\mathrm{V}_{s}\right)$ to the IF output pins.	T1 = TC2-1T, 2:1 (Mini-Circuits)
		$\begin{aligned} & \text { R10 }=\text { R11 }=0 \Omega(\text { Size 0603) R12 }= \\ & 100 \Omega \text { (Size 0603) } \end{aligned}$
		$\mathrm{Z} 1=\mathrm{Z} 2=$ Open
		Z3 = Z4 = Open

OUTLINE DIMENSIONS

Figure 7. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body (CP-16-3)
Dimensions in millimeters

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

