

FEATURES

- Dual wavelength 650 and 780nm
- 160 MHz Bandwidth @ -6dB
- 600 V/µs Slew Rate
- 6 ns Settling Time
- 10 mV Differential Output Offset Voltage
- 30 uV/°C Output Offset Voltage Drift
- -6/+6 dB External Gain Adjust
- Small 8-pin OPLGA package

APPLICATIONs

- CD-R, and CD-RW
- DVD+/-R, DVD+/-RW, and DVD-RAM

GENERAL DESCRIPTION

The SP8130 is a high-speed, differential output APC amplifier that integrates the photodiode and adjustable gain block on one chip. Independent gain control allows individual adjustment for 780nm and 650nm wavelength operation, as found in CD/DVD optical storage drives. This allows the user to control the laser power of the system in high-speed DVD+/-RW, DVD-RAM and CD-RW systems. The wide 2V output swing also allows better system performance, through improved dynamic range.

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

Supply Voltage (Vcc)	6.0V
Reference Voltage (Vs)	6.0V
Output Voltage (Vout)	Vcc
Junction Temperature (Tj)	120 °C
Storage Temperature	40°C to +100°C
Soldering Temperature	+245°C
(1x B	eflow/MSL Level 6)*

* Based upon 500 temperature cycles as judgment criteria

RECOMMENDED OPERATING CONDITIONS

Supply Voltage (Vcc)	4.5V to 5.5V
Operating temperature	20C to +85°C
CD Wavelength	
DVD Wavelength	650nm

THERMAL SPECIFICATIONS

8-pin OPLGA (3 x 3.5mm) Package		
Thermal Resistance	75 °C/W	l

SCHEMATIC DIAGRAM

ELECTRICAL/OPTICAL SPECIFICATIONS

Unless otherwise noted: Vcc = 5V, output load: $R_L = 1k\Omega$, $C_L = 20pF$, gain 0 dB, ambient temperature -20C $\leq T_A \leq +85$ °C Unless otherwise noted, electrical specifications apply to all gain modes.

Parameter	Condition	Min.	Тур.	Max	Unit	
Supply Current	TA = 25 °C, no signal		15		mA	
Supply Current	-20 ≤TA ≤ +85 °C, no signal			20		
Output Common Mode Voltage	No signal	Vcc/2.2	Vcc/2	Vcc/1.8	V	
Output Offset Voltage	Gain = 0dB, no signal	-10		10	m\/	
Output Onset Voltage	Gain = +6dB, no signal	-15		15	IIIV	
Output Offect Voltage Drift	Gain = 0dB, no signal	-30		30	u\// ⁰ C	
Output Onset Voltage Diff	Gain = $+ 6$ dB, no signal	-45		45	μν/ Ο	
Power Supply Rejection Ratio (PSRR) *	Gain = 0dB, $4.5V \le Vcc \le 5.5V$	-55	-80		dB	
Gain Switch Input Voltage	Logic level low			0.8	V	
Gain Switch input voltage	Logic level high	2			v	
Output Sensitivity	Gain = 0dB		5700		V/W	
Input Optical Power required to produce a 2V differential output swing	0.28mm laser beam diameter, uniform density, Gain = 0dB		350		μW	
Photo Detector Active Area			0.25		mm ²	
Output Sensitivity Change vs. Vcc	All gains		1	4	%/V	
Output Sensitivity Change vs. Temperature	All gains		0.05	0.1	%/°C	
Output Noise, BW= 100MHz	Gain = 0dB		1.6	2	mV	
	Gain = +6dB		2.6	5	1115	
Output Slew Rate		400	600		V/µs	
Output Setting Time to <i>2%</i> of final value	Gain = -6dB, 2Vpp step, f=10MHz		6.2	7		
	Gain = -0dB, 2Vpp step, f=10MHz		7.0	8	ns	
	Gain = +6dB, 2Vpp step, f=10MHz		7.1	9		
Full Scale Output Voltage Swing		2			V р-р	
Output Overshoot	All gains		0.5	2	%	
	Gain = -6dB, -3dB level		160			
Bandwidth	Gain = 0dB, -3dB level		140			
	Gain = +6dB, -3dB level		120			
Gain Adjust Range		-6		+8	dB	

*) PSRR = 20log ($\Delta Vcc/\Delta VOUT$)

**) Gain Linearity = (Gain2 – Gain 1)/Gain 1, where Gain = VOUT/Pin. This test is done with current injection at the wafer level.

PIN ASSIGNMENTS

Pin #	Pin Name	Pin Function
1	Gain	Gain Switch Input. Low level selects Rg1, high level selects Rg2
2	RG1	Gain Adjust 1
3	RGCOM	Common connection point for RG1 and RG2
4	Rg2	Gain Adjust 2
5	GND	Power Ground
6	Vout ()	Output Voltage Negative Swing
7	VOUT(+)	Output Voltage Positive Swing
8	Vcc	Supply Voltage. Bypass to GND with ceramic capacitor 0.1µF

OPLGA 8-pin PACKAGE DIMENSIONS

PHOTO DETECTOR PATTERN

Tolerance of PD position:

X, Y: +/- 0.20mm Angle: 0° +/- 1° Die tilt: 0° +/- 2°

ORDERING INFORMATION

Part Number	Temperature range	Package Type
SP8130DG4	-20C + 85 [°] C	8-pin OPLGA

Sipex Corporation

Headquarters and Sales Office 233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 934-7500 FAX: (408) 935-7600

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.