36M-BIT DDRII SRAM 2-WORD BURST OPERATION

Description

The $\mu \mathrm{PD} 44324082$ is a $4,194,304$-word by 8 -bit, the $\mu \mathrm{PD} 44324092$ is a $4,194,304$-word by 9 -bit, the $\mu \mathrm{PD} 44324182$ is a $2,097,152$-word by 18 -bit and the μ PD 44324362 is a $1,048,576$-word by 36 -bit synchronous double data rate static RAM fabricated with advanced CMOS technology using full CMOS six-transistor memory cell.
The $\mu \mathrm{PD} 44324082$, $\mu \mathrm{PD} 44324092, \mu \mathrm{PD} 44324182$ and $\mu \mathrm{PD} 44324362$ integrate unique synchronous peripheral circuitry and a burst counter. All input registers controlled by an input clock pair (K and $\mathrm{K} \#$) are latched on the positive edge of K and $\mathrm{K} \#$.
These products are suitable for application which require synchronous operation, high speed, low voltage, high density and wide bit configuration.
These products are packaged in 165-pin PLASTIC BGA.

Features

- $1.8 \pm 0.1 \mathrm{~V}$ power supply
- 165-pin PLASTIC BGA package (13×15)
- HSTL Interface
- DLL circuitry for wide output data valid window and future frequency scaling
- Pipelined double data rate operation
- Common data input/output bus
- Two-tick burst for low DDR transaction size
- Two input clocks (K and K\#) for precise DDR timing at clock rising edges only
- Two output clocks (C and C\#) for precise flight time and clock skew matching-clock and data delivered together to receiving device
- Internally self-timed write control
- Clock-stop capability. Normal operation is restored in 1,024 cycles after clock is resumed.
- User programmable impedance output
<R>
- Fast clock cycle time : $3.7 \mathrm{~ns}(270 \mathrm{MHz})$, $4.0 \mathrm{~ns}(250 \mathrm{MHz}), 5.0 \mathrm{~ns}(200 \mathrm{MHz})$
- Simple control logic for easy depth expansion
- JTAG boundary scan
<R> Ordering Information

Part number	Cycle Time ns	Clock Frequency MHz	Organization (word \times bit $)$	Core Supply Voltage V	I/O Interface	
μ Package						

Remarks 1. QDR Consortium standard package size is 13×15 and 15×17.
The footprint is commonly used.
2. Products with $-A$ at the end of the part number are lead-free products.

Pin Configurations

$x \times \times \#$ indicates active low signal.

165-pin PLASTIC BGA (13 x 15)
(Top View)
[μ PD44324082F5-EQ2]
[μ PD44324082F5-EQ2-A]

	1	2	3	4	5	6	7	8	9	10	11
A	CQ\#	Vss	A	R, W\#	NW1\#	K\#	NC	LD\#	A	A	CQ
B	NC	NC	NC	A	NC	K	NWO\#	A	NC	NC	DQ3
C	NC	NC	NC	Vss	A	A	A	Vss	NC	NC	NC
D	NC	NC	NC	Vss	Vss	Vss	Vss	Vss	NC	NC	NC
E	NC	NC	DQ4	VDDQ	Vss	Vss	Vss	VdoQ	NC	NC	DQ2
F	NC	NC	NC	VDDQ	Vdo	Vss	Vdo	VdoQ	NC	NC	NC
G	NC	NC	DQ5	VdoQ	Vdo	Vss	Vod	VdoQ	NC	NC	NC
H	DLL\#	Vref	VdoQ	VDDQ	Vdo	Vss	Vod	VdoQ	VdoQ	V ${ }_{\text {Ref }}$	ZQ
J	NC	NC	NC	VDDQ	Vdo	Vss	Vod	VdoQ	NC	DQ1	NC
K	NC	NC	NC	VDDQ	Vdo	Vss	Vod	VdoQ	NC	NC	NC
L	NC	DQ6	NC	VdoQ	Vss	Vss	Vss	VddQ	NC	NC	DQ0
M	NC	NC	NC	Vss	Vss	Vss	Vss	Vss	NC	NC	NC
N	NC	NC	NC	Vss	A	A	A	Vss	NC	NC	NC
P	NC	NC	DQ7	A	A	C	A	A	NC	NC	NC
R	TDO	TCK	A	A	A	C\#	A	A	A	TMS	TDI

A	: Address inputs	TMS	: IEEE 1149.1 Test input
DQ0 to DQ7	: Data inputs / outputs	TDI	: IEEE 1149.1 Test input
LD\#	: Synchronous load	TCK	: IEEE 1149.1 Clock input
R, W\#	: Read Write input	TDO	: IEEE 1149.1 Test output
NWO\#, NW1\#	: Nibble Write data select	VREF	: HSTL input reference input
K, K\#	: Input clock	VDD	: Power Supply
C, C\#	: Output clock	VDDQ	: Power Supply
CQ, CQ\#	: Echo clock	Vss	: Ground
ZQ	: Output impedance matching	NC	: No connection
DLL\#	: DLL disable		

Remarks 1. Refer to Package Drawing for the index mark.
2. 2 A and 7 A are expansion addresses: 2 A for 72 Mb and 7 A for 144 Mb .
$2 A$ of this product can also be used as NC.

165-pin PLASTIC BGA (13×15)
(Top View)
[μ PD44324092F5-EQ2]
[μ PD44324092F5-EQ2-A]

	1	2	3	4	5	6	7	8	9	10	11
A	CQ\#	Vss	A	R, W\#	NC	K\#	NC	LD\#	A	A	CQ
B	NC	NC	NC	A	NC	K	BW0\#	A	NC	NC	DQ4
C	NC	NC	NC	Vss	A	A	A	Vss	NC	NC	NC
D	NC	NC	NC	Vss	Vss	Vss	Vss	Vss	NC	NC	NC
E	NC	NC	DQ5	VdoQ	Vss	Vss	Vss	VmDQ	NC	NC	DQ3
F	NC	NC	NC	VdoQ	Vdo	Vss	Vod	VdoQ	NC	NC	NC
G	NC	NC	DQ6	VdoQ	Vdo	Vss	Vod	VdoQ	NC	NC	NC
H	DLL\#	Vref	VdDQ	VdoQ	Vod	Vss	Vod	VDDQ	VDDQ	V ${ }_{\text {Ref }}$	ZQ
J	NC	NC	NC	VddQ	Vod	Vss	Vdo	VdoQ	NC	DQ2	NC
K	NC	NC	NC	VddQ	Vod	Vss	Vdo	VdoQ	NC	NC	NC
L	NC	DQ7	NC	VddQ	Vss	Vss	Vss	VdoQ	NC	NC	DQ1
M	NC	NC	NC	Vss	Vss	Vss	Vss	Vss	NC	NC	NC
N	NC	NC	NC	Vss	A	A	A	Vss	NC	NC	NC
P	NC	NC	DQ8	A	A	C	A	A	NC	NC	DQ0
R	TDO	TCK	A	A	A	C\#	A	A	A	TMS	TDI

A	: Address inputs	TMS	: IEEE 1149.1 Test input
DQ0 to DQ8	: Data inputs / outputs	TDI	: IEEE 1149.1 Test input
LD\#	: Synchronous load	TCK	: IEEE 1149.1 Clock input
R, W\#	: Read Write input	TDO	: IEEE 1149.1 Test output
BW0\#	: Byte Write data select	VREF	: HSTL input reference input
K, K\#	: Input clock	VDD	: Power Supply
C, C\#	: Output clock	VDDQ	: Power Supply
CQ, CQ\#	: Echo clock	VSs	: Ground
ZQ	: Output impedance matching	NC	: No connection
DLL\#	: DLL disable		

Remarks 1. Refer to Package Drawing for the index mark.
2. 2 A and 7 A are expansion addresses: 2 A for 72 Mb and 7 A for 144 Mb .
$2 A$ of this product can also be used as NC.

165-pin PLASTIC BGA (13×15)
(Top View)
[μ PD44324182F5-EQ2]
[μ PD44324182F5-EQ2-A]

	1	2	3	4	5	6	7	8	9	10	11
A	CQ\#	Vss	A	R, W\#	BW1\#	K\#	NC	LD\#	A	A	CQ
B	NC	DQ9	NC	A	NC	K	BWO\#	A	NC	NC	DQ8
C	NC	NC	NC	Vss	A	A0	A	Vss	NC	DQ7	NC
D	NC	NC	DQ10	Vss	Vss	Vss	Vss	Vss	NC	NC	NC
E	NC	NC	DQ11	VdoQ	Vss	Vss	Vss	VDDQ	NC	NC	DQ6
F	NC	DQ12	NC	VodQ	Vdo	Vss	Vod	VdoQ	NC	NC	DQ5
G	NC	NC	DQ13	VodQ	Vdo	Vss	Vod	VdoQ	NC	NC	NC
H	DLL\#	Vref	VdoQ	VodQ	Vdo	Vss	Vdo	VdoQ	VdoQ	Vref	ZQ
J	NC	NC	NC	VdoQ	Vdo	Vss	Vdo	VdoQ	NC	DQ4	NC
K	NC	NC	DQ14	VodQ	Vdo	Vss	Vod	VdoQ	NC	NC	DQ3
L	NC	DQ15	NC	VdoQ	Vss	Vss	Vss	VdoQ	NC	NC	DQ2
M	NC	NC	NC	Vss	Vss	Vss	Vss	Vss	NC	DQ1	NC
N	NC	NC	DQ16	Vss	A	A	A	Vss	NC	NC	NC
P	NC	NC	DQ17	A	A	C	A	A	NC	NC	DQ0
R	TDO	TCK	A	A	A	C\#	A	A	A	TMS	TDI

A0, A	: Address inputs	TMS	: IEEE 1149.1 Test input
DQ0 to DQ17	: Data inputs / outputs	TDI	: IEEE 1149.1 Test input
LD\#	: Synchronous load	TCK	: IEEE 1149.1 Clock input
R, W\#	: Read Write input	TDO	: IEEE 1149.1 Test output
BW0\#, BW1\#	: Byte Write data select	VREF	: HSTL input reference input
K, K\#	: Input clock	VDD	: Power Supply
C, C\#	: Output clock	VDDQ	: Power Supply
CQ, CQ\#	: Echo clock	Vss	: Ground
ZQ	: Output impedance matching	NC	: No connection
DLL\#	: DLL disable		

Remarks 1. Refer to Package Drawing for the index mark.
2. 2 A and 7 A are expansion addresses: 2 A for 72 Mb and 7 A for 144 Mb .

2 A of this product can also be used as NC.

165-pin PLASTIC BGA (13×15)
(Top View)
[μ PD44324362F5-EQ2]
[μ PD44324362F5-EQ2-A]

	1	2	3	4	5	6	7	8	9	10	11
A	CQ\#	Vss	A	R, W\#	BW2\#	K\#	BW1\#	LD\#	A	Vss	CQ
B	NC	DQ27	DQ18	A	BW3\#	K	BWO\#	A	NC	NC	DQ8
C	NC	NC	DQ28	Vss	A	A0	A	Vss	NC	DQ17	DQ7
D	NC	DQ29	DQ19	Vss	Vss	Vss	Vss	Vss	NC	NC	DQ16
E	NC	NC	DQ20	VdoQ	Vss	Vss	Vss	VddQ	NC	DQ15	DQ6
F	NC	DQ30	DQ21	VDDQ	Vdo	Vss	Vod	VdoQ	NC	NC	DQ5
G	NC	DQ31	DQ22	VDDQ	Vdo	Vss	Vod	VdoQ	NC	NC	DQ14
H	DLL\#	Vref	VDDQ	VodQ	Vdo	Vss	Vod	VdoQ	VdoQ	Vref	ZQ
J	NC	NC	DQ32	VdoQ	VdD	Vss	Vdo	VdDQ	NC	DQ13	DQ4
K	NC	NC	DQ23	VDDQ	Vdo	Vss	Vdo	VdoQ	NC	DQ12	DQ3
L	NC	DQ33	DQ24	VDDQ	Vss	Vss	Vss	VdoQ	NC	NC	DQ2
M	NC	NC	DQ34	Vss	Vss	Vss	Vss	Vss	NC	DQ11	DQ1
N	NC	DQ35	DQ25	Vss	A	A	A	Vss	NC	NC	DQ10
P	NC	NC	DQ26	A	A	C	A	A	NC	DQ9	DQ0
R	TDO	TCK	A	A	A	C\#	A	A	A	TMS	TDI

AO, A	: Address inputs	TMS	: IEEE 1149.1 Test input
DQ0 to DQ35	: Data inputs / outputs	TDI	: IEEE 1149.1 Test input
LD\#	: Synchronous load	TCK	: IEEE 1149.1 Clock input
R, W\#	: Read Write input	TDO	: IEEE 1149.1 Test output
BW0\# to BW3\#	: Byte Write data select	VREF	: HSTL input reference input
K, K\#	: Input clock	VDD	: Power Supply
C, C\#	: Output clock	VDDQ	: Power Supply
CQ, CQ\#	: Echo clock	Vss	: Ground
ZQ	: Output impedance matching	NC	: No connection
DLL\#	: DLL disable		

Remarks 1. Refer to Package Drawing for the index mark.
2. 2 A and 10 A are expansion addresses: 10 A for 72 Mb and 2 A for 144 Mb .
$2 A$ and 10 A of this product can also be used as NC.

Symbol	Description
A0	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of K. All transactions operate on a burst of two words (one clock period of bus activity). A 0 is used as the lowest order address bit permitting a random starting address within the burst operation on x18 and x36 devices. These inputs are ignored when device is deselected, i.e., NOP (LD\# = H).
DQ0 to DQxx	Synchronous Data IOs: Input data must meet setup and hold times around the rising edges of K and $\mathrm{K} \#$. Output data is synchronized to the respective C and C \# data clocks or to K and $\mathrm{K} \#$ if C and C \# are tied to HIGH. x8 device uses DQ0 to DQ7. x9 device uses DQ0 to DQ8. x18 device uses DQ0 to DQ17. $\times 36$ device uses DQ0 to DQ35.
LD\#	Synchronous Load: This input is brought LOW when a bus cycle sequence is to be defined. This definition includes address and read/write direction. All transactions operate on a burst of 2 data (one clock period of bus activity).
R, W\#	Synchronous Read/Write Input: When LD\# is LOW, this input designates the access type (READ when R, W\# is HIGH, WRITE when R, W\# is LOW) for the loaded address. R, W\# must meet the setup and hold times around the rising edge of K.
BWx\# NWx\#	Synchronous Byte Writes (Nibble Writes on $\times 8$): When LOW these inputs cause their respective byte or nibble to be registered and written during WRITE cycles. These signals must meet setup and hold times around the rising edges of K and $\mathrm{K} \#$ for each of the two rising edges comprising the WRITE cycle. See Pin Configurations for signal to data relationships. x8 device uses NW0\#, NW1\#. x9 device uses BWO\#. x18 device uses BW0\#, BW1\#. x36 device uses BWO\# to BW3\#. See Byte Write Operation for relation between BWx\#, NWx\# and Dxx.
K, K\#	Input Clock: This input clock pair registers address and control inputs on the rising edge of K , and registers data on the rising edge of K and the rising edge of $K \#$. K \# is ideally 180 degrees out of phase with K. All synchronous inputs must meet setup and hold times around the clock rising edges.
C, C\#	Output Clock: This clock pair provides a user controlled means of tuning device output data. The rising edge of C\# is used as the output timing reference for first output data. The rising edge of C is used as the output reference for second output data. Ideally, C\# is 180 degrees out of phase with C . When use of K and $\mathrm{K} \#$ as the reference instead of C and $\mathrm{C} \mathrm{\#}$, then fixed C and $\mathrm{C} \#$ to High. Operation cannot be guaranteed unless C and $\mathrm{C} \#$ are fixed to High (i.e. toggle of C and C \#)
CQ, CQ\#	Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched to the synchronous data outputs and can be used as a data valid indication. These signals run freely and do not stop when Q tristates. If C and C \# are stopped (if K and $\mathrm{K} \#$ are stopped in the single clock mode), CQ and $\mathrm{CQ} \#$ will also stop.
ZQ	Output Impedance Matching Input: This input is used to tune the device outputs to the system data bus impedance. DQ, CQ and CQ\# output impedance are set to $0.2 \times R Q$, where $R Q$ is a resistor from this bump to ground. The output impedance can be minimized by directly connect $Z Q$ to VDDQ. This pin cannot be connected directly to GND or left unconnected.
DLL\#	DLL Disable: When debugging the system or board, the operation can be performed at a clock frequency slower than TKHKH (MAX.) without the DLL circuit being used, if DLL\# = L. The AC/DC characteristics cannot be guaranteed, however.
$\begin{aligned} & \hline \text { TMS } \\ & \text { TDI } \end{aligned}$	IEEE 1149.1 Test Inputs: 1.8 V I/O levels. These balls may be left Not Connected if the JTAG function is not used in the circuit.
TCK	IEEE 1149.1 Clock Input: 1.8V I/O levels. This pin must be tied to Vss if the JTAG function is not used in the circuit.
TDO	IEEE 1149.1 Test Output: 1.8V I/O level.
Vref	HSTL Input Reference Voltage: Nominally $\mathrm{V}_{\mathrm{DD}} \mathrm{Q} / 2$. Provides a reference voltage for the input buffers.
VDD	Power Supply: 1.8 V nominal. See DC Characteristics and Operating Conditions for range.
VDDQ	Power Supply: Isolated Output Buffer Supply. Nominally 1.5 V . 1.8 V is also permissible. See DC Characteristics and Operating Conditions for range.

Symbol	Description
VSS	Power Supply: Ground
NC	No Connect: These signals are not connected internally. The logic level applied to the ball sites appears in the JTAG scan chain when JTAG scan.

Block Diagram

Power-on Sequence

The following two timing charts show the recommended power-on sequence, i.e., when starting the clock after $V_{D D} / V_{D D Q}$ stable and when starting the clock before $V_{D D} / V_{D D Q}$ stable.

1. Clock starts after $V_{D D} / V_{D D Q}$ stable

The clock is supplied from a controller.
(a)

Note Input a stable clock from the start.
(b)

(c)

2. Clock starts before $V_{d D} / V_{d D Q}$ stable

The clock is supplied from a clock generator.
(a)

(b)

Burst Sequence

Linear Burst Sequence Table
[μ PD44324182, μ PD44324362]

	A0	A0
External Address	0	1
1st Internal Burst Address	1	0

Truth Table

Operation	LD\#	R, W\#	CLK	DQ		
WRITE cycle	L	L	$\mathrm{L} \rightarrow \mathrm{H}$	Data in		
Load address, input write data on two				Input data	D(A1)	D(A2)
consecutive K and $\mathrm{K} \#$ rising edge				Input clock	$\mathrm{K}(\mathrm{t}+1) \uparrow$	$\mathrm{K} \#(\mathrm{t}+1) \uparrow$
READ cycle	L	H	$\mathrm{L} \rightarrow \mathrm{H}$	Data out		
Load address, read data on two				Output data	Q(A1)	Q(A2)
consecutive C and C\# rising edge				Output clock	$\mathrm{C} \#(\mathrm{t}+1) \uparrow$	$\mathrm{C}(\mathrm{t}+2) \uparrow$
NOP (No operation)	H	X	$\mathrm{L} \rightarrow \mathrm{H}$	High-Z		
Clock stop	X	X	Stopped	Previous state		

Remarks 1. H: High level, L: Low level, $\times:$ don't care, $\uparrow:$ rising edge.
2. Data inputs are registered at K and $K \#$ rising edges. Data outputs are delivered at C and $C \#$ rising edges except if C and $\mathrm{C} \#$ are HIGH then Data outputs are delivered at K and $\mathrm{K} \#$ rising edges.
3. All control inputs in the truth table must meet setup/hold times around the rising edge (LOW to HIGH) of K . All control inputs are registered during the rising edge of K .
4. This device contains circuitry that ensure the outputs to be in high impedance during power-up.
5. Refer to state diagram and timing diagrams for clarification.
6. A1 refers to the address input during a WRITE or READ cycle. A2 refers to the next internal burst address in accordance with the linear burst sequence.
7. It is recommended that $\mathrm{K}=\mathrm{K} \#=\mathrm{C}=\mathrm{C}$ \# when clock is stopped. This is not essential but permits most rapid restart by overcoming transmission line charging symmetrically.

Byte Write Operation
[μ PD44324082]

Operation	K	$\mathrm{K} \#$	NW	NW1\#
Write DQ0 to DQ7	$\mathrm{L} \rightarrow \mathrm{H}$	-	0	0
	-	$\mathrm{L} \rightarrow \mathrm{H}$	0	0
Write DQ0 to DQ3	$\mathrm{L} \rightarrow \mathrm{H}$	-	0	1
	-	$\mathrm{L} \rightarrow \mathrm{H}$	0	1
Write DQ4 to DQ7	$\mathrm{L} \rightarrow \mathrm{H}$	-	1	0
	-	$\mathrm{L} \rightarrow \mathrm{H}$	1	0
Write nothing	$\mathrm{L} \rightarrow \mathrm{H}$	-	1	1
	-	$\mathrm{L} \rightarrow \mathrm{H}$	1	1

Remark H: High level, L: Low level, \rightarrow : rising edge.
[μ PD44324092]

Operation	K	$\mathrm{K} \#$	BW0\#
Write DQ0 to DQ8	$\mathrm{L} \rightarrow \mathrm{H}$	-	0
	-	$\mathrm{L} \rightarrow \mathrm{H}$	0
Write nothing	$\mathrm{L} \rightarrow \mathrm{H}$	-	1
	-	$\mathrm{L} \rightarrow \mathrm{H}$	1

Remark H: High level, L: Low level, \rightarrow : rising edge.
[μ PD44324182]

Operation	K	$\mathrm{K} \#$	$\mathrm{BWO} \mathrm{\#}$	$\mathrm{BW} 1 \#$
Write DQ0 to DQ17	$\mathrm{L} \rightarrow \mathrm{H}$	-	0	0
	-	$\mathrm{L} \rightarrow \mathrm{H}$	0	0
Write DQ0 to DQ8	$\mathrm{L} \rightarrow \mathrm{H}$	-	0	1
	-	$\mathrm{L} \rightarrow \mathrm{H}$	0	1
Write DQ9 to DQ17	$\mathrm{L} \rightarrow \mathrm{H}$	-	1	0
	-	$\mathrm{L} \rightarrow \mathrm{H}$	1	0
Write nothing	$\mathrm{L} \rightarrow \mathrm{H}$	-	1	1
	-	$\mathrm{L} \rightarrow \mathrm{H}$	1	1

Remark H: High level, L: Low level, \rightarrow : rising edge.
[μ PD44324362]

Operation	K	K\#	BW0\#	BW1\#	BW2\#	BW3\#
Write DQ0 to DQ35	$L \rightarrow H$	-	0	0	0	0
	-	$\mathrm{L} \rightarrow \mathrm{H}$	0	0	0	0
Write DQ0 to DQ8	$L \rightarrow H$	-	0	1	1	1
	-	$\mathrm{L} \rightarrow \mathrm{H}$	0	1	1	1
Write DQ9 to DQ17	$L \rightarrow H$	-	1	0	1	1
	-	$\mathrm{L} \rightarrow \mathrm{H}$	1	0	1	1
Write DQ18 to DQ26	$\mathrm{L} \rightarrow \mathrm{H}$	-	1	1	0	1
	-	$\mathrm{L} \rightarrow \mathrm{H}$	1	1	0	1
Write DQ27 to DQ35	$L \rightarrow H$	-	1	1	1	0
	-	$\mathrm{L} \rightarrow \mathrm{H}$	1	1	1	0
Write nothing	$L \rightarrow H$	-	1	1	1	1
	-	$\mathrm{L} \rightarrow \mathrm{H}$	1	1	1	1

Remark H: High level, L: Low level, \rightarrow : rising edge.

Bus Cycle State Diagram

Remarks 1. A0 is internally advanced in accordance with the burst order table.
Bus cycle is terminated after burst count $=2$.
2. State machine control timing sequence is controlled by K .

Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	VDD		-0.5		+2.5	
Output supply voltage	VDDQ		-0.5		V	
Input voltage	VIN		-0.5		$\mathrm{VDD}+0.5(2.5 \mathrm{~V}$ MAX. $)$	V
Input / Output voltage	$\mathrm{VI/O}$		-0.5		$\mathrm{VDDQ}+0.5(2.5 \mathrm{~V}$ MAX. $)$	V
Operating ambient temperature	TA		0		70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55		+125	${ }^{\circ} \mathrm{C}$

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended DC Operating Conditions ($\mathrm{T} A=0$ to $70^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Supply voltage	VDD		1.7		1.9	V	
Output supply voltage	VDDQ		1.4		VDD	V	1
High level input voltage	VIH (DC)		VREF +0.1		VDDQ +0.3	V	1,2
Low level input voltage	VIL (DC)		-0.3		VREF -0.1	V	1,2
Clock input voltage	VIN		-0.3		VDDQ +0.3	V	1,2
Reference voltage	VREF		0.68		0.95	V	

Notes 1. During normal operation, $V_{D D Q}$ must not exceed $V_{D D}$.
2. Power-up: $V_{I H} \leq V_{D D Q}+0.3 \mathrm{~V}$ and $V_{D D} \leq 1.7 \mathrm{~V}$ and $V_{D D Q} \leq 1.4 \mathrm{~V}$ for $\mathrm{t} \leq 200 \mathrm{~ms}$

Recommended AC Operating Conditions ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
High level input voltage	VIH (AC)		VREF +0.2		-	V	1
Low level input voltage	VIL (AC)		-		VREF -0.2	V	1

Note 1. Overshoot: $\mathrm{V}_{\mathrm{IH}}(\mathrm{AC}) \leq \mathrm{V}_{\mathrm{DD}}+0.7 \mathrm{~V}$ for $\mathrm{t} \leq \mathrm{TKHKH} / 2$
Undershoot: VIL (AC) $\geq-0.5 \mathrm{~V}$ for $\mathrm{t} \leq$ TKHKH/2
Control input signals may not have pulse widths less than TKHKL (MIN.) or operate at cycle rates less than TKHKH (MIN.).

DC Characteristics ($\mathrm{TA}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}, \mathrm{VDD}=1.8 \pm 0.1 \mathrm{~V}$)

Parameter	Symbol	Test condition		MIN.	TYP.	MAX.			Unit	Note	
				x8, x9		x18	x36				
Input leakage current	ILI				-2	-	+2			$\mu \mathrm{A}$	
I/O leakage current	ILO			-2	-	+2			$\mu \mathrm{A}$		
Operating supply current (Read Write cycle)	IDD	$\begin{aligned} & \mathrm{VIN} \leq \mathrm{VIL} \text { or } \mathrm{VIN} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I} / \mathrm{O}=0 \mathrm{~mA} \\ & \text { Cycle }=\mathrm{MAX} . \end{aligned}$	-E37			690	970	1,090	mA		
			-E40			650	900	1,000			
			-E50			550	750	850			
Standby supply current (NOP)	IsB1	$\begin{aligned} & \mathrm{VIN} \leq \mathrm{VIL} \text { or } \mathrm{VIN} \geq \mathrm{V} \mathrm{IH}, \\ & \mathrm{I} / \mathrm{O}=0 \mathrm{~mA} \\ & \text { Cycle }=\mathrm{MAX} . \end{aligned}$	-E37			520			mA		
			-E40			500					
			-E50			400					
High level output voltage	$\mathrm{VOH}($ Low)	$\|\mathrm{IOH}\| \leq 0.1 \mathrm{~mA}$		VDDQ-0.2	-	VddQ			V	3, 4	
	VOH	Note1		VddQ/2-0.12	-	VodQ/2+0.12			V	3, 4	
Low level output voltage	Vol(Low)	$\mathrm{loL} \leq 0.1 \mathrm{~mA}$		Vss	-	0.2			V	3, 4	
	Vol	Note2		VddQ/2-0.12	-	VddQ/2+0.12			V	3, 4	

Notes 1. Outputs are impedance-controlled. $|\mathrm{Ioн}|=(\mathrm{VDDQ} / 2) /(R Q / 5) \pm 15 \%$ for values of $175 \Omega \leq R Q \leq 350 \Omega$.
2. Outputs are impedance-controlled. loL $=(\mathrm{VDDQ} / 2) /(\mathrm{RQ} / 5) \pm 15 \%$ for values of $175 \Omega \leq R Q \leq 350 \Omega$.
3. $A C$ load current is higher than the shown $D C$ values.
4. HSTL outputs meet JEDEC HSTL Class I and standards.

Capacitance ($\mathrm{T} A=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input capacitance (Address, Control)	CIN	$\mathrm{VIN}=0 \mathrm{~V}$		4	5	pF
Input / Output capacitance (DQ, CQ, CQ\#)	$\mathrm{CI/O}$	$\mathrm{VI/O}=0 \mathrm{~V}$		6	7	pF
Clock Input capacitance	Cclk	$\mathrm{V}_{\mathrm{clk}}=0 \mathrm{~V}$		5	6	pF

Remark These parameters are periodically sampled and not 100\% tested.

Thermal Resistance

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.
Thermal resistance (junction - ambient)	$\theta \mathrm{j}-\mathrm{a}$			22.6	
Thermal resistance (junction - case)	$\theta \mathrm{j}$-c			${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Remark These parameters are simulated under the condition of air flow velocity $=1 \mathrm{~m} / \mathrm{s}$.

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \pm 0.1 \mathrm{~V}$)

AC Test Conditions ($\mathrm{V}_{\mathrm{DD}}=1.8 \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{dD}} \mathrm{Q}=1.4$ to VdD$)$

Input waveform (Rise / Fall time $\leq 0.3 \mathrm{~ns}$)

Output waveform

Output load condition

Figure 1. External load at test

Read and Write Cycle

Parameter		Symbol	$\begin{gathered} -\mathrm{E} 37 \\ (270 \mathrm{MHz}) \end{gathered}$		$\begin{gathered} -\mathrm{E} 40 \\ (250 \mathrm{MHz}) \end{gathered}$		$\begin{gathered} -\mathrm{E} 50 \\ (200 \mathrm{MHz}) \end{gathered}$		Unit	Note	
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.				
Clock											
Average Clock cycle time (K, K\#, C, C\#)		TKHKH	3.7	8.4	4.0	8.4	5.0	8.4	ns	1	
Clock phase jitter (K, K\#, C, C\#)		TKC var	-	0.2	-	0.2	-	0.2	ns	2	
Clock HIGH time (K, K\#, C, C\#)		TKHKL	1.5	-	1.6	-	2.0	-	ns		
Clock LOW time (K, K\#, C, C\#)		TKLKH	1.5	-	1.6	-	2.0	-	ns		
Clock (active high) to Clock\# (active low)$(\mathrm{K} \rightarrow \mathrm{~K} \#, \mathrm{C} \rightarrow \mathrm{C} \#)$		TKHK\#H	1.7	-	1.8	-	2.2	-	ns		
Clock\# (active low) to Clock (active high) (K\# $\rightarrow \mathrm{K}, \mathrm{C} \# \rightarrow \mathrm{C}$)		TK\#HKH	1.7	-	1.8	-	2.2	-	ns		
Clock to data clock$(\mathrm{K} \rightarrow \mathrm{C}, \mathrm{~K} \# \rightarrow \mathrm{C} \#)$	250 to 270 MHz	TKHCH	0	1.65	-	-	-	-	ns		
	200 to 250 MHz		0	1.8	0	1.8	-	-			
	167 to 200 MHz		0	2.3	0	2.3	0	2.3			
	133 to 167 MHz		0	2.8	0	2.8	0	2.8			
	$<133 \mathrm{MHz}$		0	3.55	0	3.55	0	3.55			
DLL lock time (K, C)		TKC lock	1,024	-	1,024	-	1,024	-	Cycle	3	
K static to DLL reset		TKC reset	30	-	30	-	30	-	ns		
Output Times											
C, C\# HIGH to output valid		TCHQV	-	0.45	-	0.45	-	0.45	ns		
C, C\# HIGH to output hold		TCHQX	-0.45	-	-0.45	-	-0.45	-	ns		
C, C\# HIGH to echo clock valid		TCHCQV	-	0.45	-	0.45	-	0.45	ns		
C, C\# HIGH to echo clock hold		TCHCQX	-0.45	-	-0.45	-	-0.45	-	ns		
CQ, CQ\# HIGH to output valid		TCQHQV	-	0.3	-	0.3	-	0.35	ns	4	
CQ, CQ\# HIGH to output hold		TCQHQX	-0.3	-	-0.3	-	-0.35	-	ns	4	
C HIGH to output High-Z		TCHQZ	-	0.45	-	0.45	-	0.45	ns		
C HIGH to output Low-Z		TCHQX1	-0.45	-	-0.45	-	-0.45	-	ns		
Setup Times											
Address valid to K rising edge		TAVKH	0.5	-	0.5	-	0.6	-	ns	5	
Synchronous load input (LD\#), read write input (R, W\#) valid to K rising edge		TIVKH	0.5	-	0.5	-	0.6	-	ns	5	
Data inputs and write data select inputs (BWx\#, NWx\#) valid to K, K\# rising edge		TDVKH	0.35	-	0.35	-	0.4	-	ns	5	
Hold Times											
K rising edge to address hold		TKHAX	0.5	-	0.5	-	0.6	-	ns	5	
K rising edge to synchronous load input (LD\#), read write input (R, W\#) hold		TKHIX	0.5	-	0.5	-	0.6	-	ns	5	
$\mathrm{K}, \mathrm{K} \#$ rising edge to data inputs and write data select inputs (BWx\#, NWx\#) hold		TKHDX	0.35	-	0.35	-	0.4	-	ns	5	

Notes 1. When debugging the system or board, these products can operate at a clock frequency slower than TKHKH (MAX.) without the DLL circuit being used, if DLL\# = L. The AC/DC characteristics cannot be guaranteed, however.
2. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge. TKC var (MAX.) indicates a peak-to-peak value.
3. Vod slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention.

DLL lock time begins once VDD and input clock are stable.
It is recommended that the device is kept NOP (LD\# = H) during these cycles.
4. Echo clock is very tightly controlled to data valid / data hold. By design, there is a $\pm 0.1 \mathrm{~ns}$ variation from echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.
5. This is a synchronous device. All addresses, data and control lines must meet the specified setup and hold times for all latching clock edges.

Remarks 1. This parameter is sampled.
2. Test conditions as specified with the output loading as shown in AC Test Conditions unless otherwise noted.
3. Control input signals may not be operated with pulse widths less than TKHKL (MIN.).
4. If $\mathrm{C}, \mathrm{C} \#$ are tied $\mathrm{HIGH}, \mathrm{K}, \mathrm{K} \#$ become the references for $\mathrm{C}, \mathrm{C} \#$ timing parameters.
5. VDDQ is $1.5 \mathrm{~V} D C$.

Read and Write Timing

Remarks 1. Q01 refers to output from address A0.
Q02 refers to output from the next internal burst address following A0, etc.
2. Outputs are disabled (high impedance) 2.5 clocks after the last READ (LD\# $=L, R, W \#=H$) is input in the sequences of [READ]-[NOP].
3. The second NOP cycle at the cycle " 5 " is not necessary for correct device operation; however, at high clock frequencies it may be required to prevent bus contention.

Application Example

Remark AC specifications are defined at the condition of SRAM outputs, CQ, CQ\# and DQ with termination.

JTAG Specification

These products support a limited set of JTAG functions as in IEEE standard 1149.1.
Test Access Port (TAP) Pins

Pin name	Pin assignments	
TCK	$2 R$	Test Clock Input. All input are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.
TMS	$10 R$	Test Mode Select. This is the command input for the TAP controller state machine.
TDI	$11 R$	Test Data Input. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP controller state machine and the instruction that is currently loaded in the TAP instruction.
TDO	$1 R$	Test Data Output. This is the output side of the serial registers placed between TDI and TDO. Output changes in response to the falling edge of TCK.

Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held high for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.

JTAG DC Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{0}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \pm 0.1 \mathrm{~V}$, unless otherwise noted)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
JTAG Input leakage current	ILI	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {DD }}$	-5.0	-	+5.0	$\mu \mathrm{A}$	
JTAG I/O leakage current	ILO	$0 \mathrm{~V} \leq \mathrm{V}_{\operatorname{IN}} \leq \mathrm{V}_{\mathrm{DD}} \mathrm{Q},$ Outputs disabled	-5.0	-	+5.0	$\mu \mathrm{A}$	
JTAG input high voltage	VIH		1.3	-	VdD+0.3	V	
JTAG input low voltage	VIL		-0.3	-	+0.5	V	
JTAG output high voltage	Voh1	\mid lohc \| = $100 \mu \mathrm{~A}$	1.6	-	-	V	
	Voh2	$\|\mathrm{IOHT}\|=2 \mathrm{~mA}$	1.4	-	-	V	
JTAG output low voltage	Vol1	IoLc $=100 \mu \mathrm{~A}$	-	-	0.2	V	
	Vol2	Iolt $=2 \mathrm{~mA}$	-	-	0.4	V	

JTAG AC Test Conditions

Input waveform (Rise / Fall time $\leq 1 \mathrm{~ns}$)

Output waveform

Output load

Figure 2. External load at test

JTAG AC Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{0}$ to $70^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Clock							
Clock cycle time	tтнTH		100	-	-	ns	
Clock frequency	f_{TF}		-	-	10	MHz	
Clock high time	tthtL		40	-	-	ns	
Clock low time	ttith		40	-	-	ns	
Output time							
TCK low to TDO unknown	ttoox		0	-	-	ns	
TCK low to TDO valid	ttlov		-	-	20	ns	
Setup time							
TMS setup time	tmvit		10	-	-	ns	
TDI valid to TCK high	tovth		10	-	-	ns	
Capture setup time	tcs		10	-	-	ns	
Hold time							
TMS hold time	tтhmx		10	-	-	ns	
TCK high to TDI invalid	tthdx		10	-	-	ns	
Capture hold time	tch		10	-	-	ns	

JTAG Timing Diagram

Scan Register Definition (1)

Register name	
Instruction register	The instruction register holds the instructions that are executed by the TAP controller when it is moved into the run-test/idle or the various data register state. The register can be loaded when it is placed between the TDI and TDO pins. The instruction register is automatically preloaded with the IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.
Bypass register	The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAMs TAP to another device in the scan chain with as little delay as possible.
ID register	The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when the controller is put in capture-DR state with the IDCODE command loaded in the instruction register. The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR state.
Boundary register	The boundary register, under the control of the TAP controller, is loaded with the contents of the RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to activate the boundary register. The Scan Exit Order tables describe which device bump connects to each boundary register location. The first column defines the bits position in the boundary register. The second column is the name of the input or I/O at the bump and the third column is the bump number.

Scan Register Definition (2)

Register name	Bit size	Unit
Instruction register	3	bit
Bypass register	1	bit
ID register	32	bit
Boundary register	109	bit

ID Register Definition

Part number	Organization	ID [31:28] vendor revision no.	ID [27:12] part no.	ID [11:1] vendor ID no.	ID [0] fix bit
μ PD44324082	$4 \mathrm{M} \times 8$	XXXX	0000000000111101	00000010000	1
μ PD44324092	$4 \mathrm{M} \times 9$	XXXX	0000000000111110	00000010000	1
μ PD44324182	$2 \mathrm{M} \times 18$	XXXX	0000000000111111	00000010000	1
μ PD44324362	$1 \mathrm{M} \times 36$	XXXX	0000000001000000	00000010000	1

SCAN Exit Order

Bit no.	Signal name				$\begin{gathered} \text { Bump } \\ \text { ID } \end{gathered}$	Bit no.	Signal name				Bump ID	$\begin{gathered} \text { Bit } \\ \text { no. } \end{gathered}$	Signal name				Bump ID
	x8	x9	x18	x36			x8	x9	x18	x36			x8	x9	x18	x36	
1	C\#				6R	37	NC	NC	NC	NC	10D	73	NC	NC	NC	NC	2C
2	C				6P	38	NC	NC	NC	NC	9E	74	DQ4	DQ5	DQ11	DQ20	3E
3	A				6N	39	NC	NC	DQ7	DQ17	10C	75	NC	NC	NC	DQ29	2D
4	A				7P	40	NC	NC	NC	DQ16	11D	76	NC	NC	NC	NC	2E
5	A				7N	41	NC	NC	NC	NC	9C	77	NC	NC	NC	NC	1E
6	A				7R	42	NC	NC	NC	NC	9D	78	NC	NC	DQ12	DQ30	2F
7	A				8R	43	DQ3	DQ4	DQ8	DQ8	11B	79	NC	NC	NC	DQ21	3F
8	A				8P	44	NC	NC	NC	DQ7	11C	80	NC	NC	NC	NC	1G
9	A				9R	45	NC	NC	NC	NC	9B	81	NC	NC	NC	NC	1F
10	NC	DQ0	DQ0	DQ0	11P	46	NC	NC	NC	NC	10B	82	DQ5	DQ6	DQ13	DQ22	3G
11	NC	NC	NC	DQ9	10P	47	CQ				11A	83	NC	NC	NC	DQ31	2G
12	NC	NC	NC	NC	10N	48	A	A	A	Vss	10A	84			L\#		1H
13	NC	NC	NC	NC	9P	49	A				9A	85	NC	NC	NC	NC	1J
14	NC	NC	DQ1	DQ11	10M	50	A				8B	86	NC	NC	NC	NC	2 J
15	NC	NC	NC	DQ10	11 N	51	A				7 C	87	NC	NC	DQ14	DQ23	3K
16	NC	NC	NC	NC	9M	52	A	A	A0	A0	6C	88	NC	NC	NC	DQ32	3 J
17	NC	NC	NC	NC	9N	53	LD\#				8A	89	NC	NC	NC	NC	2K
18	DQ0	DQ1	DQ2	DQ2	11L	54	NC	NC	NC	BW1\#	7A	90	NC	NC	NC	NC	1K
19	NC	NC	NC	DQ1	11M	55	NWO\#	BW0\#	BWO\#	BW0\#	7B	91	DQ6	DQ7	DQ15	DQ33	2L
20	NC	NC	NC	NC	9L	56	K				6B	92	NC	NC	NC	DQ24	3L
21	NC	NC	NC	NC	10L	57	K\#				6A	93	NC	NC	NC	NC	1M
22	NC	NC	DQ3	DQ3	11K	58	NC	NC	NC	BW3\#	5B	94	NC	NC	NC	NC	1L
23	NC	NC	NC	DQ12	10K	59	NW1\#	NC	BW1\#	BW2\#	5A	95	NC	NC	DQ16	DQ25	3N
24	NC	NC	NC	NC	9J	60	R, W\#				4A	96	NC	NC	NC	DQ34	3M
25	NC	NC	NC	NC	9K	61	A				5C	97	NC	NC	NC	NC	1N
26	DQ1	DQ2	DQ4	DQ13	10J	62	A				4B	98	NC	NC	NC	NC	2M
27	NC	NC	NC	DQ4	11J	63	A				3A	99	DQ7	DQ8	DQ17	DQ26	3P
28	ZQ				11H	64	Vss				2 A	100	NC	NC	NC	DQ35	2 N
29	NC	NC	NC	NC	10G	65	CQ\#				1A	101	NC	NC	NC	NC	2P
30	NC	NC	NC	NC	9G	66	NC	NC	DQ9	DQ27	2B	102	NC	NC	NC	NC	1P
31	NC	NC	DQ5	DQ5	11F	67	NC	NC	NC	DQ18	3B	103	A				3R
32	NC	NC	NC	DQ14	11G	68	NC	NC	NC	NC	1C	104	A				4R
33	NC	NC	NC	NC	9F	69	NC	NC	NC	NC	1B	105	A				4P
34	NC	NC	NC	NC	10F	70	NC	NC	DQ10	DQ19	3D	106	A				5P
35	DQ2	DQ3	DQ6	DQ6	11E	71	NC	NC	NC	DQ28	3C	107	A				5N
36	NC	NC	NC	DQ15	10E	72	NC	NC	NC	NC	1D	108	A				5R
												109	-				Internal

Remark Bump ID 10A of bit no. 48 can also be used as NC if the product is $x 36$. Bump ID 2A of bit no. 64 can also be used as NC. The register always indicates a low level, however.

JTAG Instructions

Instructions	Description
EXTEST	The EXTEST instruction allows circuitry external to the component package to be tested. Boundary- scan register cells at output pins are used to apply test vectors, while those at input pins capture test results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST, the output drive is turned on and the PRELOAD data is driven onto the output pins.
IDCODE	The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the test-logic-reset state.
BYPASS	When the BYPASS instruction is loaded in the instruction register, the bypass register is placed between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
SAMPLE / PRELOAD	SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the capture- DR state loads the data in the RAMs input and DQ pins into the boundary scan register. Because the RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample metastable input will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus hold time (tcs plus tch). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the boundary scan register. Moving the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins.
SAMPLE-Z	If the SAMPLE-Z instruction is loaded in the instruction register, all RAM DQ pins are forced to an inactive drive state (high impedance) and the boundary register is connected between TDI and TDO when the TAP controller is moved to the shift-DR state.

JTAG Instruction Coding

IR2	IR1	IR0	Instruction	Note
0	0	0	EXTEST	
0	0	1	IDCODE	
0	1	0	SAMPLE-Z	1
0	1	1	RESERVED	2
1	0	0	RAMPLE / PRELOAD	
1	1	1	RESERVED	2
1	1	1	BYPASS	2

Notes 1. TRISTATE all DQ pins and CAPTURE the pad values into a SERIAL SCAN LATCH.
2. Do not use this instruction code because the vendor uses it to evaluate this product.

Output Pin States of CQ, CQ\# and Q

Instructions	Control-Register Status	Output Pin Status		Note
		CQ,CQ\#	Q	
EXTEST	0	Update	Hi-Z	
	1	Update	Update	
IDCODE	0	SRAM	SRAM	
	1	SRAM	SRAM	
SAMPLE-Z	0	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z	
	1	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z	
SAMPLE	0	SRAM	SRAM	
	1	SRAM	SRAM	
BYPASS	0	SRAM	SRAM	
	1	SRAM	SRAM	

Remark The output pin statuses during each instruction vary according to the Control-Register status (value of Boundary Scan Register, bit no. 109).
There are three statuses:
Update : Contents of the "Update Register" are output to the output pin (QDR Pad).
SRAM : Contents of the SRAM internal output "SRAM Output" are output to the output pin (QDR Pad).
$\mathrm{Hi}-\mathrm{Z}$: The output pin (QDR Pad) becomes Hi-Z by controlling of the "Hi-Z JTAG ctrl".
The Control-Register status is set during Update-DR at the EXTEST or SAMPLE instruction.

Boundary Scan Register Status of Output Pins CQ, CQ\# and Q

Instructions	SRAM Status	Boundary Scan Register Status		Note
		CQ,CQ\#	Q	
EXTEST	READ (Lo-Z)	Pad	Pad	
	NOP (Hi-Z)	Pad	Pad	
IDCODE	READ (Lo-Z)	-	-	No definition
	NOP (Hi-Z)	-	-	
SAMPLE-Z	READ (Lo-Z)	Pad	Pad	
	NOP (Hi-Z)	Pad	Pad	
SAMPLE	READ (Lo-Z)	Internal	Internal	
	NOP (Hi-Z)	Internal	Pad	
BYPASS	READ (Lo-Z)	-	-	No definition
	NOP (Hi-Z)	-	-	

The Boundary Scan Register statuses during execution each instruction vary according to the instruction code and SRAM operation mode.
There are two statuses:
Pad : Contents of the output pin (QDR Pad) are captured in the "CAPTURE Register" in the Boundary Scan Register.

Internal : Contents of the SRAM internal output "SRAM Output" are captured in the "CAPTURE Register" in the Boundary Scan Register.

TAP Controller State Diagram

Disabling the Test Access Port

It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal operation of the device, TCK must be tied to Vss to preclude mid level inputs.
TDI and TMS may be left open but fix them to VDD via a resistor of about $1 \mathrm{k} \Omega$ when the TAP controller is not used. TDO should be left unconnected also when the TAP controller is not used.

Test Logic (Data Scan)

то $\overline{\chi \times}$

Register state

Instruction
tDO

Output Inactive

Package Drawing

165-PIN PLASTIC BGA (13x15)

(UNIT:mm)

ITEM	DIMENSIONS
D	13.00 ± 0.10
E	15.00 ± 0.10
w	0.15
e	1.00
A	1.40 ± 0.11
A 1	0.40 ± 0.05
A 2	1.00
b	0.50 ± 0.05
x	0.08
y	0.10
y 1	0.20
ZD	1.50
ZE	0.50
	P165F5-100-EQ2

Recommended Soldering Condition

Please consult with our sales offices for soldering conditions of these products.

Types of Surface Mount Devices
μ PD44324082F5-EQ2 $:$
μ PD44324092F5-EQ2 \quad 165-pin PLASTIC BGA (13×15)

Revision History

Edition/ Date	Page		Type of revision	Location	Description (Previous edition \rightarrow This edition)
	This edition	Previous edition			
3rd edition/ Mar. 2006	Throughout	Throughout	Addition	-	-E37 (270 MHz)

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between $\mathrm{V}_{\text {IL }}(M A X)$ and $\mathrm{V}_{\text {IH }}$ (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

(3) PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.
The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or l/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

- The information in this document is current as of March, 2006. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.
(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

