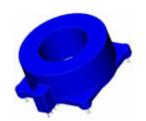


Current Transducer HTFS 200..800-P/SP2

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).



All Data are given with a $R_1 = 10 \text{ k}\Omega$

$I_{PN} = 200 - 400 - 800 A$

Electrical data

Primary nominal r.m.s. current $I_{PN}(A)$		Primary current measuring range I _P (A)		Туре		
200		±300		HTFS 200-	P/SP2	
400		±600		HTFS 400-	P/SP2	
800		±1200		HTFS 800-P/SP2		
\mathbf{V}_{OUT}	Analog outp	out voltage @ I _P		V _{REF} ±(1.2	5. I _P / I _{PN}) V	
		$\mathbf{I}_{P} = 0$		$V_{RFF} \pm 0.0$	25 V	
\mathbf{V}_{REF}	Internal Ref	ference ¹⁾ - Output voltage		$1/2V_{c} \pm 0$.025 V	
		V _{REF} Output impedance	typ.	200	Ω	
		V _{REF} Load impedance		≥ 200	kΩ	
R,	Output load	d resistance		≥ 2	kΩ	
\mathbf{R}_{OUT}^{T}	Output imp	edance		< 10	Ω	
C	Max. output capacitive load			< 1	μF	
V _c	Supply volt	tage (± 5 %)		5	V	
I _c	Current cor	nsumption @ $V_c = 5 \text{ V}$		22	mA	

Accuracy - Dynamic performance data

X	Accuracy $^{2)}$ @ I_{PN} , $T_A = 25$ °C	≤±1	% of I _{PN}
$\mathbf{e}_{\scriptscriptstyle\! L}$	Linearity 0 1.5 x I _{PN}	≤±0.5	% of I _{PN}
	Thermal drift of $\mathbf{V}_{\text{OUT}} @ \mathbf{I}_{\text{P}} = 0$	≤±0.3	mV/K
TCV	Thermal drift of V _{REF}	≤±0.01	%/K
TCV _{OUT}	V_{REF} Thermal drift of $V_{OUT}/V_{REF} @ I_{P} = 0$	≤±0.2	mV/K
TC e _G	Thermal drift of the gain	$\leq \pm 0.05\%$ of	reading/K
\mathbf{V}_{OM}	Residual voltage @ $I_p = 0$, after an overload of 3 x I_{PNDC}	<±0.5	% of $I_{_{\mathrm{PN}}}$
t _{ra}	Reaction time @ 10 % of I _{PN}	< 3	μs
$\mathbf{t}_{_{\mathrm{r}}}$	Response time @ 90 % of I_{PN}	< 7	μs
di/dt	di/dt accurately followed	> 100	A/µs
	Output noise (DC10 kHz)	< 15	mVpp
	(DC 1 MHz)	< 40	mVpp
f	Frequency bandwidth (-3 dB) 3)	DC 20	kHz

General data

$\mathbf{T}_{_{\mathrm{A}}}$	Ambient operating temperature	- 40 + 105	°C
T_{s}	Ambient storage temperature	- 40 + 105	°C
dCp	Creepage distance	> 4	m m
dCl	Clearance distance	> 4	m m
CTI	Comparative tracking index (Group IIIa)	220	V
	UL94 classification	V0	
m	Mass	60	g
	Standards	EN 50178 (97-10-01)	
		-	-

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Low power consumption
- Single power supply +5V
- Ratiometric offset
- T_A = -40..+105 °C
- PCB fixation by 4 Ø1 pins

Advantages

- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.
- \bullet $\mathbf{V}_{\mathsf{REF.}}$ IN/OUT

Applications

- Forklift drives
- AC variable speed drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

041222/2

Current Transducer HTFS 200..800-P/SP2

Insulation category

V_b Nominal Voltage 150 V r.m.s.

with IEC 61010-1 standards and following conditions

- Single insulation
- Over voltage category III
- Pollution degree 2
- Heterogeneous field

 $\mathbf{V}_{_{\mathrm{b}}}$ Nominal Voltage 150 V r.m.s.

with EN 50178 standards and following conditions

- Reinforced insulation
- Over voltage category III
- Pollution degree 2
- Heterogeneous field

V_d R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn 2.5 kV
 V_e R.m.s. voltage for partial discharge extinction @ 10pC > 1 kV
 V_m Impulse withstand voltage 1.2/50µs 4 kV

If insulated cable is used for the primary circuit, the voltage category could be improved with the following table :

Cable insulation (primary)

HAR 03

HAR 05

HAR 07

Category

300V CAT III

400V CAT III

500V CAT III

Notes : 1) It is possible to overdrive **V**_{REF} with an external reference voltage between 2 - 2.8 V providing its ability to sink or source approx. 2.5 mA.

Safety:

Caution, risk of danger

Caution, risk of electrical shock

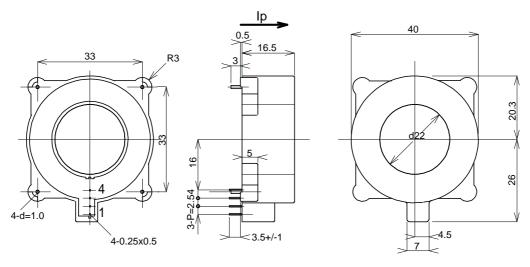
This transducer shall be used in accordance with manufacturer instruction. Power supply shall be a low voltage source and shall have an efficient

protective system against over current.

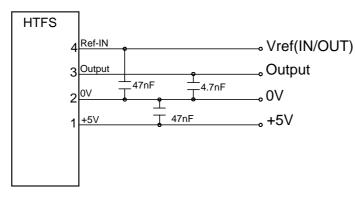
Power supply must incorporate a circuit breaker. This transducer shall be used in an electric/electronic equipment in respect of standards rules and applicable safety requirements.

Primary bar and output terminals can provide hazardous voltage.

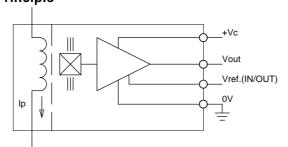
This transducer is a built in device, of which conducting parts must be inaccessible by installation.


Protective envelope or additional shield must be used.

²⁾ Excluding offset.


³⁾Small signal only to avoid excessive heatings of the magnetic core.

HTFS 200..800-P/SP2 Dimensions (in mm)


Required Connection Circuit

Terminal Pin

- 1...+5V
- 2...0V
- 3...Output 4...Vref(IN/OUT)

Operation Principle

Mechanical characteristics

• General tolerance

± 0.2 mm

Fixation

4 pins x Ø 1.0

• Recommended PCB hole

Ø 1.2 mm

• Fastening & connection of secondary Recommended PCB hole

4 pins 0.5 x 0.25 Ø 0.7 mm

Remarks

- \mathbf{V}_{OUT} is positive when \mathbf{I}_{P} flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 120°C.