

Current Transducer LA 150-P

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Preliminary

$I_{PN} = 150 A$

Electrical data

I _P	Primary current, measuring range	150 0 ± 200	
R	Measuring resistance $T_A = 70^{\circ}C$	$T_{A} = 85^{\circ}$	C
	$R_{Mmin}^{}\;R_{Mmax}^{}$	$\mathbf{R}_{Mmin}\;\mathbf{R}_{M}$	1 max
	with $\pm 15V$ @ ± 200 A _{max} 0 30	0	15 Ω
Is	Cocondary naminal current	75	mΑ
ı _s K	Conversion ratio	1:2000	
٧		± 15	V
L	Current consumption app	16 + I _{sn}	mΑ
V	R.m.s. voltage for AC isolation test, 50/60Hz,1mn	2.5	kV

Accuracy-Dynamic performance data

		% of I _{PN}
		mA
Residual current @ $I_p = 0$,		
after an excursion at 1x I _{PN}	Max.± 0.15	mΑ
Thermal drift of I _o	± 0.005	mA/K
Response time @ 90% of I _P	<1	μs
di/dt accurately followed	> 200	A/μs
Frequency bandwidth (- 1dB)1)	DC 150	kHz
	Linearity $(0 \pm \mathbf{I}_{PN})$ Electrical offset current $(0 \cdot \mathbf{I}_{P}) = 0$, $(0 \cdot \mathbf{T}_{A}) = 25$ Residual current $(0 \cdot \mathbf{I}_{P}) = 0$, after an excursion at 1x $(0 \cdot \mathbf{I}_{PN})$ Thermal drift of $(0 \cdot \mathbf{I}_{PN})$ Response time $(0 \cdot \mathbf{I}_{PN})$ di/dt accurately followed	Linearity $(0\pm I_{PN})$ ± 0.25 Electrical offset current $@I_P = 0$, $@T_A = 25^{\circ}C$ Max. ± 0.2 Residual current $@I_P = 0$, after an excursion at $1x I_{PN}$ Max. ± 0.15 Thermal drift of I_O ± 0.005 Response time $@90\%$ of I_P <1 di/dt accurately followed >200

General data

T _A	Ambient operating temperature Ambient storage temperature	- 10 + 80 - 15 + 85	_
R _s	Secondary coil resistance	80	Ω
m	Mass	25	g

Notes: EN 50178 approval pending

Features

- Closed loop (compensation) current transducer using the Hall effect
- · Printed circuit board mounting

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capacity

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications

010118/2

 $^{^{\}mbox{\tiny 1)}}$ Derating is needed to avoid excessive core heating at high frequency.

LA 150-P Left view **Bottom view** 29.5 36 13 29.5 Terminal Pin Identification +Vcc-Vcc +Vcc -Vcc 5.1 22.9 Μ 28 Output Front view General tolerance +/- 0.2 mm Primary through-hole 13 x 8.5 mm 3 pins Fastening & connection of secongary 0.7 x 0.7 mm Recommended PCB hole 1.0 mm