

UTC UNISONIC TECHNOLOGIES CO., LTD

UF640

MOSFET

18 A, 200 V, 0.18 OHM, **N-CHANNEL POWER MOSFET**

DESCRIPTION

These kinds of n-channel power mos field effect transistor have low conduction power loss, high input impedance, and high switching speed, Linear Transfer Characteristics, so can be use in a variety of power conversion applications.

The UF640 suitable for resonant and PWM converter topologies.

FEATURES

- * $R_{DS(ON)} = 0.18 \Omega @V_{GS} = 10 V.$
- * Ultra Low gate charge (typical 43nC)
- * Low reverse transfer capacitance (C_{RSS} = typical 100 pF)
- * Fast switching capability
- * Avalanche energy specified
- * Improved dv/dt capability, high ruggedness

*Pb-free plating product number: UF640L

SYMBOL

ORDERING INFORMATION

Order Number		Daakaga	Pin	Assignr	Decking		
Normal	Lead Free Plating	Гаскауе	1	2	3	Facking	
UF640-TA3-T	UF640L-TA3-T	TO-220	G	D	S	Tube	
UF640-TF3-T	UF640L-TF3-T	TO-220F	G	D	S	Tube	

UF640 <u>L-TA3</u> -T		
	(1)Packing Type	(1) T: Tube
	(2)Package Type	(2) TA3: TO-220, TF3: TO-220F
	(3)Lead Plating	(3) L: Lead Free Plating Blank: Pb/Sn

■ ABSOLUTE MAXIMUM RATING (T_c = 25 , unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Drain-Source Voltage	V _{DSS}	200	V
Drain-Gate Voltage (R_{GS} = 20k Ω)	V _{DGR}	200	V
Gate-Source Voltage	V _{GSS}	±20	V
$T_c = 25$		18	А
$T_{\rm C} = 100$	ID	11	А
Pulsed Drain Current (Note 2)	I _{DM}	72	А
Single Pulse Avalanche Energy Rating (Note 3)	E _{AS}	580	mJ
Maximum Power Dissipation		125	W
Dissipation Derating Factor	PD	1.0	W/
Junction Temperature	TJ	+150	
Storage Temperature	Tstg	-55 ~ +150	

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Thermal Resistance, Channel to Ambient	θ _{JA}			62	°C/W
Thermal Resistance, Channel to Case	θ _{JC}			1	°C/W

■ ELECTRICAL CHARACTERISTICS (T_c = 25 , unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Drain-Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0V	200			V
Gate Threshold Voltage	V _{GS(THR)}	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2		4	V
		V_{DS} = Rated BV _{DSS} , V_{GS} = 0V			25	μA
Drain-Source Leakage Current	I _{DSS}	V_{DS} = 0.8 x Rated BV _{DSS} , V_{GS} = 0V,			250	
		T _J = 125			200	μΑ
On-State Drain Current	I _{D(ON)}	$V_{DS} > I_{D(ON)} \times R_{DS(ON)}MAX, V_{GS} = 10V$	18			Α
Gate-Source Leakage Current	I _{GSS}	$V_{GS} = \pm 20V$			±100	nA
Drain-Source On Resistance	R _{DS(ON)}	I _D = 10A, V _{GS} = 10V		0.14	0.18	Ω
Forward Transconductance	g fs	V _{DS} ≥ 10V, I _D = 11A	6.7	10		S
Input Capacitance	CISS			1275		pF
Output Capacitance	Coss	V_{DS} = 25V, V_{GS} = 0V, f = 1MHz		400		pF
Reverse Transfer Capacitance	C _{RSS}			100		pF
Total Gate Charge	0	V _{GS} = 10V, I _D ≈ 18A, V _{DS} = 0.8 x		13	64	nC
(Gate to Source + Gate to Drain)	QG(101)	Rated BV _{DSS} Gate Charge is			04	
Gate-Source Charge	Q _{GS}	Essentially Independent of		8		nC
Gate-Drain "Miller" Charge	Q_{GD}	Operating Temperature I _{G(REF)} = 1.5mA		22		nC
Turn-On Delay Time	t _{D(ON)}	V _{DD} = 100V, I _D ≈ 18A, R _{GS} = 9.1Ω,		13	21	ns
Rise Time	t _R	R _L = 5.4Ω,		50	77	ns
Turn-Off Delay Time	t _{D(OFF)}	MOSFET Switching Times are		46	68	ns
Fall Time	t⊦	Essentially Independent of Operating Temperature		35	54	ns

UF640

■ ELECTRICAL CHARACTERISTICS(Cont.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		Measured From the Contact Screw on Tab to		3.5		nH
Internal Drain Inductance	LD	Center of Die Measured From the Drain Lead, 6mm (0.25in) From Package to Center of Die		4.5		nH
Internal Source Inductance	Ls	Measured From the Source Lead, 6mm (0.25in) from Header to Source Bonding Pad		7.5		nH
SOURCE TO DRAIN DIODE SPECIF	ICATIONS	6				
Diode Forward Voltage (Note 1)	V_{SD}	$T_J = 25$, $I_S = 18A$, $V_{GS} = 0V$,			2.0	V
Continuous Source Current (body diode)	ls	Integral Reverse p-n Junction Diode in the MOSFET			18	А
Pulse Source Current (body diode) (Note 1)	Іѕм	Gateo			72	A
Reverse Recovery Time	t _{RR}	T _J = 25 , I _S = 18A, dI _S /dt = 100A/µs	120	240	530	ns
Reverse Recovery Charge	Q _{RR}	T _J = 25 , I _S = 18A, dI _S /dt = 100A/µs	1.3	2.8	5.6	μC

Note 1. Pulse Test: Pulse width \leq 300µs, duty cycle \leq 2%.

2. Repetitive Rating: Pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve.

3. L = 3.37mH, V_{DD} = 50V, R_G = 25 Ω , peak I_{AS} = 18A, starting T_J = 25 $\,$.

UF640

TEST CIRCUIT

Figure 1A. Unclamped Energy Test Circuit

Figure 1B. Unclamped Energy Waveforms

Figure 2A. Switching Time Test Circuit

Figure 3A. Gate Charge Test Circuit

Figure 2B. Resistive Switching Waveforms

TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

