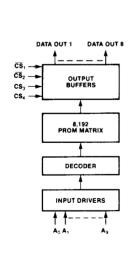
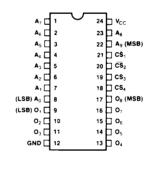


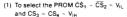
3628A 8K (1K x 8) BIPOLAR PROM


3628A-1	50	ns	Max.
3628A-3	70	ns	Max.
3628A-4	90	ns	Max.


- Fast Access Time: 50 ns for 3628A-1
- Low Power Dissipation: 0.08 mW/Bit Typically
- Four Chip Select Inputs for Easy Memory Expansion
- **■** ±10% Power Supply Tolerance

- **■** Three-State Outputs
- Hermetic 24-Pin DIP
- Polycrystalline Silicon Fuses for Higher Fuse Reliability/Higher Programmability

The Intel 3628A is a fully decoded 8192-bit PROM organized as 1024 words by 8 bits. The worst case access time of 35 ns is specified over the 0°C to 75°C temperature range and 10% V_{CC} power supply tolerances. There are four chip selects provided to facilitate expansion into larger PROM arrays. The PROMs use the Schottky clamped TTL technology with polycrystalline silicon fuses. All outputs are initially high, and logic low levels can be electrically programmed in selected bit locations.


The 3628A is a super-fast, high-density PROM. This 8192-bit PROM uses the most advanced technology available. As a result the 3628A combines higher performance and lower power in a smaller die than the 3628. The 3628A is packaged in a hermetic 24-pin dual in-line package with the exact pin configuration as the 3628.

DATA OUTPUTS

0.-0

Figure 1. Block Diagram

Figure 2. Pin Configuration

Figure 3. Logic Symbol

— ○	cs,	o,
	CS ₂	02
-	CS ₃	O ₃
	CS ₄	O ₄
	A ₀	O ₅
	A 1	O ₆
	A ₂	O,
	A ₃	08
	A 4	
	A 5	
	A ₆	
_	A 7	
	A _B	
	A 9	

PROGRAMMING

The programming specifications are described in the PROM programming section of the Data Catalog.

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias65°C to +125°C
Storage Temperature65°C to +160°C
Output or Supply Voltages0.5V to 7 Volts
All Input Voltages1.5V to 5.5V
Output Currents

*NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS (All Limits Apply for V_{CC} = +5.0V)± 10%, T_A = 0°C to +75°C)

Symbol Parame	Parameter	Limits				Test Conditions
	, arameter	Min.	Typ. ^[1]	Max.	Unit	
IFA	Address Input Load Current		-0.05	-0.25	mA	$V_{CC} = 5.5V, V_A = 0.45V$
IFS	Chip Select Input Load Current		-0.05	-0.25	mA	$V_{CC} = 5.5V, V_{S} = 0.45V$
IRA	Address Input Leakage Current			40	μΑ	V _{CC} = 5.5V, V _A = 5.5V
l _{RS}	Chip Select Input Leakage Current			40	μΑ	$V_{CC} = 5.5V, V_{S} = 5.5V$
Io	Output Leakage for High Impedance State			40	μА	V _O = 5.5V or 0.45V, V _{CC} = 5.5V, CS ₁ = CS ₂ = 2.4V
I _{SC} ^[2]	Output Short Circuit Current	-20	-40	-100	mA	V _O = 0V
V _{CA}	Address Input Clamp Voltage		-0.9	-1.5	٧	V _{CC} = 4.5V, I _A = -10 mA
V _{CS}	Chip Select Input Clamp Voltage		-0.9	-1.5	V	V _{CC} = 4.5V, I _S = -10 mA
V _{OH}	Output High Voltage	2.4	3.2		V	$I_{OH} = -2.4 \text{ mA}, V_{CC} = 4.5 \text{V}$
VOL	Output Low Voltage		0.3	0.45	٧	V _{CC} = 4.5V, I _{OL} = 10 mA
lcc	Power Supply Current		120	170	mA	V _{CC} = 5.5V
VIL	Input "Low" Voltage			0.85	٧	
V _{IH}	Input "High" Voltage	2.0			٧	

NOTES:

- 1. Typical values are for T_A = 25°C and nominal supply voltages.
- 2. Unmeasured outputs are open during this test.

CAPACITANCE⁽¹⁾ (T_A = 25°C, f = 1 MHz)

Symbol	Parameter	Limits		Unit	Test Conditions	
		Тур.	Max.	John	rest Conditions	
CINA	Address Input Capacitance	4	10	pF	V _{CC} = 5V V _{IN} = 2.5V	
CINS	Chip-Select Input Capacitance	4	10	ρF	V _{CC} = 5V V _{IN} = 2.5V	
C _{OUT}	Output Capacitance	6	12	pF	V _{CC} = 5V V _{OUT} = 2.5\	

NOTES

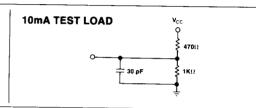
^{1.} This parameter is only periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS ($V_{CC} = +5V \pm 10\%$, $T_{A} = 0^{\circ}C$ to $+75^{\circ}C$)

Symbol	Parameter		Max. Limits			
		3628A-1	3628A-3	3628A-4	Unit	Test Conditions
t _A	Address to Output Delay	50	70	90	ns	CS ₁ = CS ₂ = V _{II} and
t _{EN}	Output Enable Time	30	30	30	ns	$CS_3 = CS_4 = V_{IH}$ to
t _{DIS}	Output Disable Time	30	30	30	ns	select the PROM.

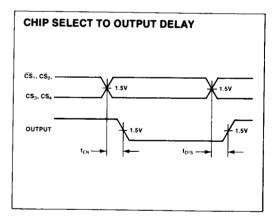
SWITCHING CHARACTERISTICS

Conditions of Test:


Input pulse amplitudes: 2.5V

Input pulse rise and fall times of 5 nanoseconds between 1 volt and 2 volts


Speed measurements are made at 1.5 volt levels


Output loading is 10 mA and 30 pF

Frequency of test: 2.5 MHz

WAVEFORMS

